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Abstract—This paper tackles a multi-agent bandit setting
where M agents cooperate together to solve the same instance of
a K-armed stochastic bandit problem. The agents are heteroge-
neous: each agent has limited access to a local subset of arms and
the agents are asynchronous with different gaps between decision-
making rounds. The goal for each agent is to find its optimal local
arm, and agents can cooperate by sharing their observations
with others. While cooperation between agents improves the
performance of learning, it comes with an additional complexity
of communication between agents. For this heterogeneous multi-
agent setting, we propose two learning algorithms, CO-UCB
and CO-AAE. We prove that both algorithms achieve order-
optimal regret, which is O

(∑
i:∆̃i>0 log T/∆̃i

)
, where ∆̃i is the

minimum suboptimality gap between the reward mean of arm
i and any local optimal arm. In addition, a careful selection
of the valuable information for cooperation, CO-AAE achieves
a low communication complexity of O(log T ). Last, numerical
experiments verify the efficiency of both algorithms.

Index Terms—Multi-armed bandits, multi-agent system, het-
erogeneous agents, regret, communication complexity

I. INTRODUCTION

Multi-armed bandits (MABs) [1], [2] fall into a well-
established framework for learning under uncertainty that has
been extensively studied since the 1950s after the seminal
work of [3]. MABs have a broad range of applications
including online shortest path routing, online advertisement,
channel allocation, and recommender systems [2], [4]–[6]. In
the basic MAB problem, a learner repeatedly pulls an arm
in each round, and observes the reward/loss associated with
the selected arm, but not those associated with others. The
goal of the learner is to minimize regret, which compares the
rewards/loss received by the learner to those accumulated by
the best arm in hindsight.

Distributed MABs, which are extensions of basic MABs,
have been extensively studied recently in different settings [7]–
[15]. Distributed bandits are well motivated by a broad
range application scenarios such as (1) large-scale learning
systems [16], in domains such as online advertising and
recommendation systems; (2) cooperative search by multiple
robots [17], [18]; (3) applications in wireless cognitive ra-
dio [7], [19]–[21]; and distributed learning in geographically
distributed communication systems, such as a set of IoT
devices learning about the underlying environments [22]–
[26]. Most prior work on multi-agent MABs assume that
agents are homogeneous: all agents have full access to the
set of all arms, and hence they solve the same instance of
a MAB problem, with the aim to minimize the aggregate

regret of the agents either in a competition setting [7], [9],
[14], [19]–[21], [27]–[29], i.e., where multiple agents receive
degraded or no rewards when they pull the same arm, or
in a collaboration/cooperation setting [10], [13]–[15], [30]–
[32], where agents pulling the same arm observe independent
rewards, and agents can communicate their observations to
each other in order to improve their learning performance.

A. Distributed Bandits with Heterogeneous Agents

In this paper, we study a heterogeneous version of the
cooperative multi-agent MAB problem in which agents only
have partial access to the set of arms. More formally, we study
a multi-agent system with a set A = {1, . . . ,M} of agents
and a set K = {1, . . . ,K} of arms. Agent j ∈ A has access
to a subset Kj ⊆ K of arms. We refer to arms in Kj as
local arms for agent j. Agents also appears exhibit different
learning capabilities that lead to different action rates; agent
j ∈ A can pull an arm every 1/θj rounds, 0 < θj ≤ 1.
Here θj is the action rate of agent j. The goal of each agent
is to learn the best local arm within its local set, and agents
can share information on overlapping arms in their local sets
to accelerate the learning process. In this model, we assume
agents are fully connected and can truthfully broadcast their
observed rewards to each other. We call this setup Action-
constrained Cooperative Multi-agent MAB (AC-CMA2B) and
formally define it in Section II.

B. Motivating Application

Cooperative multi-agent bandits have been well-motivated
in the literature, and in the following, we motivate the
heterogeneous-agent setting. Online advertisement is a classic
application that is tackled using the bandit framework. In the
online advertisement, the goal is to select an ad (arm) for
a product or a search query, and the reward is the revenue
obtained from ads. In the context of AC-CMA2B, consider a
scenario that for a set of related products, a separate agent runs
a bandit algorithm to select a high-reward ad for each product
in the set. However, the set of available ads might have partial
overlaps among multiple related products, i.e., different agents
might have some overlapping arms. Hence, by leveraging the
AC-CMA2B model, agents running different bandit algorithms
can cooperate by sharing their observations to improve their
performance. In this setting, different action rate among the
agents also makes sense, since different products may have
different popularity; hence, the agents pull arms (ads) at
different rates. One may imagine similar cooperative scenarios



for recommendation systems in social networks [15] where
multiple learning agents in different social networks, e.g.,
Facebook, Instagram, cooperate to recommend posts from
overlapping sets of actions. Even more broadly, the multi-
agent version of classical bandit applications is a natural
extension [33]. For example, in online shortest path routing
problem [34], [35], as another classic example of bandit
applications, multi-agent setting could capture the case in
which the underlying network is large and each agent is
responsible for routing within a sub-graph in the network.
Last, it is also plausible that the to have asynchronous learning
among different agents in the sense that each agent has its own
action rate for decision making.

C. Contributions

The paper explores the benefits of cooperation among agents
in improving the learning performance as compared to inde-
pendent decision making by agents. On the other hand, coop-
eration between agents comes with additional communication
complexity. Hence, we aim to design cooperative algorithms
with sublinear regret and low communication complexity.

This is challenging since these two goals can be in conflict.
Intuitively, with more information exchange, the agents can
benefit from empirical observations made by others, result-
ing in smaller regret. However, this comes at the expense
of additional communication complexity due to information
exchange among agents. In this paper, we tackle AC-CMA2B
by developing two cooperative bandit algorithms and analyze
their regret and communication complexities. The contribution
is summarized as follows.

First, to characterize the regret of our algorithms, we
introduce ∆̃i as a customized notion of the suboptimality gap,
which is unique to AC-CMA2B. Specifically, the parameter ∆̃i,
i ∈ K (see Equation (2) for the formal definition), measures
the minimum gap between the mean reward of arm i and
local optimal arms of agents that include i in their local sets.
Intuitively, {∆̃i}i∈K determine the “difficulty” of the bandit
problem in a distributed and heterogeneous setting and appear
in the regret bounds.

Second, we present two learning algorithms, CO-UCB and
CO-AAE, which extend the Upper Confidence Bound algo-
rithm and the Active Arm Elimination algorithm [36] to the
cooperative setting, respectively. We use the notion of local
suboptimality gap ∆̃i and characterize the regrets of CO-UCB
and CO-AAE and show that both algorithms achieve a regret of
O
(∑

i:∆̃i>0 log T/∆̃i

)
. By establishing a regret lower bound

for AC-CMA2B, we show that the above regret is optimal. To
the best of our knowledge, this is the first optimality result for
distributed bandits in a heterogeneous setting. Even though
both algorithms are order-optimal, the regret of CO-UCB is
smaller than CO-AAE by a constant factor (see Theorems 2
and 4). This is also validated by our simulations in Section VI
with real data traces.

Last, we investigate the communication complexity of both
algorithms, which measures the communication overhead in-
curred by the agents for cooperation to accelerate the learning

process. In our work, communication complexity is defined
to be the total number of messages, i.e., arm indices and
observed rewards, exchanged by the agents. Our analysis
shows that CO-UCB generally needs to send as much as
O(MΘT ) amount of messages, where Θ is the aggregate
action rate of all agents. Apparently, the communication
complexity of CO-UCB is higher than that of CO-AAE, which
is O

(∑
i:∆̃i>0 log T/∆̃2

i

)
.

We note that the authors in [33] also tackle a coopera-
tive bandit problem with multiple heterogeneous agents with
partial access to a subset of arms and different action rates.
However, in [33], the goal of each agent is to find the global
optimal arm, while in this work, the goal of each agent
is to find its local optimal arm. This difference leads to
substantially different challenges in the algorithm design and
analysis. More specifically, in [33], a foundational challenge is
to find an effective cooperative strategy to resolve a dilemma
between pulling local vs. external arms. This is not the case in
AC-CMA2B since the goal is to find the best local action. In
addition, in [33], the communication complexity of algorithms
is not analyzed. Our paper, instead, focuses on designing
cooperative strategies with low communication complexities.

II. MODEL AND PRELIMINARIES

A. System Model

We consider a cooperative multi-agent MAB (CMA2B) set-
ting, where there is a set A = {1, . . . ,M} of independent
agents, each of which has partial access to a global set
K = {1, . . . ,K} of arms. Let Kj ⊆ K,Kj = |Kj |, be the
set of arms available to agent j ∈ A. Associated with arms
are mutually independent sequences of i.i.d. rewards, taken to
be Bernoulli with means 0 ≤ µ(i) ≤ 1, i ∈ K. We assume
that the local sets of some agents overlap so that cooperation
among agents makes sense.

In addition to differences in their access to arms, agents
also differ in their decision making capabilities. Specifically,
considering decision rounds {1, . . . , T}, agent j can pull an
arm every ωj ∈ N+ rounds, i.e., decision rounds for agent j
are t = ωj , 2ωj , . . . , Njωj , where Nj = bT/ωjc. Parameter
ωj represents the inter-round gap of agent j. For simplicity
of analysis, we define θj := 1/ωj as the action rate of agent
j. Intuitively, the larger θj , the faster agent j can pull arms.

We assume that all agents can communicate with all other
agents. Hence every time an agent pulls an arm, it can
broadcast the arm index and the reward received to any other
agent. However, there is a deterministic communication delay,
dj1,j2 , between any two agents, j1 and j2, measured in units of
decision rounds. In addition, we use dj to denote the maximum
delay from other agents to agent j.

B. Performance Metrics

At each decision round, agent j can pull an arm from Kj .
The goal of each agent is to learn the best local arm. The
regret of agent j is defined as

RjT := µ(i∗j )Nj −
∑

t∈{kωj :k=0,1,...,Nj}
xt(I

j
t ), (1)



where i∗j is the local optimal arm in Kj , Ijt ∈ Kj is the action
taken by agent j at round t, and xt(I

j
t ) is the realized reward.

Without loss of generality, we assume that the local sets of
at least two agents overlap, i.e., ∃j, j′ ∈ A : Kj ∩Kj′ 6= ∅ and
the overall goal is to minimize aggregate regret of all agents,
i.e., RT =

∑
j∈AR

j
T .

In addition, we assume that it is costly to send observations
to other agents. To measure the communication overhead of
an algorithm in AC-CMA2B, we simply assume that each
message contains enough bits to transmit the index of an arm
or an observation on the reward, and similar to [14], [37], the
communication complexity, denoted as CT , is defined to be
the total number of messages sent by all agents in [1, T ].

C. Additional Notations and Terminologies

To facilitate our algorithm design and analysis, we introduce
the following notations. By Ai, we denote set of agents that
can access arm i, i.e., Ai := {j ∈ A : i ∈ Kj}. By A∗i , we
denote the set of agents whose optimal local arm is i, i.e.,
A∗i := {j ∈ Ai : µi ≥ µi′ , for i′ ∈ Kj}. Note that A∗i may
be empty. Moreover, let A∗−i = Ai \ A∗i be the set of agents
including i as a suboptimal arm. Finally, let Mi, Mi∗ , and
M−i be the sizes of Ai, Ai∗ , and A−i respectively.

By ∆(i, i′), we denote the difference in the mean rewards of
arms i and i′, i.e., ∆(i, i′) := µ(i)−µ(i′). Specifically, ∆(i∗, i)
written as ∆i, is the suboptimality gap in the basic bandit
problem. In additional to this standard definition, we introduce
the following CMA2B-specific version of the suboptimality
gap, denoted by ∆̃i

∆̃i :=

{
minj∈A−i

∆(i∗j , i), A−i 6= ∅;
0, otherwise.

(2)

Last, we define Θ and Θi, i ∈ K, as follows.

Θ :=
∑
j∈A

θj , and Θi :=
∑
j∈Ai

θj .

We note that both ∆̃i and Θi play key roles in characterizing
the regret bounds of an algorithm in AC-CMA2B. Specifically,
∆̃i measures the minimum gap of the reward mean between
the local optimal arm of agents in A−i and arm i, and Θi

measures the aggregate action rate of agents inAi, and roughly
the larger the Θi, the higher the rate at which arm i can be
pulled by the set of agents that belongs to, i.e., Ai.

III. ALGORITHMS

In AC-CMA2B, each agent has to identify the local optimal
arm and the learning process can be accelerated by com-
municating with the other agents with common arms. The
traditional challenge for MAB comes from the exploration-
exploitation dilemma. In AC-CMA2B, the agents have to
resolve this by designing learning algorithms with low regret
and low communication complexity. The heterogeneity in
action rates and limited access to the decision set exacerbates
the design and analysis of cooperative learning algorithms
for AC-CMA2B. In this section, we present two algorithms:
CO-UCB and CO-AAE. CO-UCB generalizes the classic Upper

Confidence Bound algorithm and achieves good regret but
incurs high communication complexity. CO-AAE borrows the
idea of the arm elimination strategy but incorporates a novel
communication strategy tailored to reduce communication
complexity. In Section IV, we derive a regret lower bound for
AC-CMA2B, analyze regrets and communication complexities
for both algorithms, show the order optimality of the regrets
for both algorithms, and show that CO-AAE achieves low
communication complexity.

A. Confidence Interval
Both CO-UCB and CO-AAE use confidence of the mean

rewards to make decisions. We introduce the notion of con-
fidence interval in the following. In AC-CMA2B, each agent
computes empirical mean rewards of the arms. For arm i ∈ K
with n observations, the mean reward is denoted as µ̂(i, n)1,
which is the average of the n observations on arm i. With
these observations, we can compute a confidence interval for
the true mean reward. Specifically, the width of the confidence
interval for arm i and agent j at time t is defined as

CI(i, j, t) :=

√
α log δ−1

t

2n̂jt (i)
, (3)

where n̂jt (i) is the total number of observations (including
both local observations and those received from other agents)
of arm i available to agent j by time t (observations made
in time slots from 1 to t − 1). Here δt > 0 and α > 2 are
parameters of the confidence interval. We build the following
confidence interval for arm i ∈ K:

µ(i) ∈
[
µ̂(i, n̂jt (i))− CI(i, j, t), µ̂(i, n̂jt (i)) + CI(i, j, t)

]
,

where µ(i) satisfies the upper (or lower) bound with proba-
bility at least 1 − δαt (0 < δt ≤ 1 is a specified parameter at
time slot t). One can refer to [1] for a detailed analysis of the
above confidence interval.

B. CO-UCB: Cooperative Upper Confidence Bound Algorithm
In this subsection, we present CO-UCB, a cooperative bandit

algorithm for the AC-CMA2B model. According to CO-UCB,
each agent selects the arm with the largest upper confidence
bound. For agent j, there is

Ijt = arg max
i∈K

µ̂
(
i, n̂jt (i)

)
+ CI(i, j, t).

With each observation received from the selected arm or
other agents, CO-UCB updates the mean reward estimate and
the upper confidence bound. In the meantime, observations
received from local arms are broadcast to other agents that
contain the corresponding arm in their local sets. Details
of CO-UCB are summarized in Algorithm 1. In CO-UCB,
agents broadcast all observations with others. This leads to
high communication complexity of the algorithm. In what
follows, we present CO-AAE, an algorithm that improves the
communication complexity of cooperation.

1In the algorithm pseudocode, we drop t and j from the notations n̂jt (i)
and µ̂(i, n̂jt (i)) for brevity, and simplify them as n̂(i) and µ̂(i), respectively.
The precise notation, however, is used in analysis.



Algorithm 1 The CO-UCB Algorithm for Agent j
1: Initialization: n̂(i) = 0, µ̂(i), i ∈ Kj ; α > 2, δt.
2: for each ecision round t = l/θj (l ∈ {1, . . . , Nj}) do
3: Pull arm Ijt with the highest upper confidence bound
4: Increase n̂(Ijt ) by 1
5: Update the empirical mean value of µ̂(Ijt )
6: Broadcast xt(I

j
t ) to other agents which contains arm Ijt

7: end for
8: for each newly received xt(i), i ∈ Kj from the past decision round do
9: Execute Lines (4)-(5)

10: end for

Algorithm 2 The CO-AAE Algorithm for Agent j
1: Initialization: n̂(i) = 0, µ̂(i), i ∈ Kj ; α > 2, δt.
2: for each received xτ (i), τ < t, i ∈ Kj for past rounds do
3: Execute Lines (7)-(11)
4: end for
5: for each decision round t = l/θj (l ∈ {1, . . . , Nj}) do
6: Pull arm Ijt from the candidate set as constructed in Equation (4) with

the least observations
7: Increase n̂(Ijt ) by 1 and update the empirical mean value, µ̂(Ijt )
8: Reconstruct the candidate set based on the updated values of n̂(It)

and µ̂(Ijt ) by using Equation (4)
9: if one arm is eliminated then

10: Broadcast the indices of eliminated arms to other agents
11: end if
12: if the candidate set contains more than 1 arms then
13: Broadcast xt(I

j
t ) to other agents whose candidate set contains

arm Ijt and has more than one arms
14: end if
15: end for

C. CO-AAE: Cooperative Active Arm Elimination Algorithm

CO-AAE is independently executed by each agent and is
summarized as Algorithm 2. By maintaining the confidence
intervals of local arms, CO-AAE maintains a candidate set to
track the arms likely to be the optimal local arm. The candidate
set is initially the entire local set, and when the confidence
interval of an arm comes to lie below that of another arm,
the arm is removed from the candidate set. During execution,
CO-AAE selects the arm with the fewest observations from
the candidate set. The candidate set allows CO-AAE to avoid
sending messages regarding low-reward arms resulting in a
lower communication complexity than CO-UCB. Details are
introduced below.

a) Selection Policy for Local Arms: We first present
details on constructing the candidate set for agent j. We
formally define the candidate set Cj,t in Eq. (4). The candidate
set of j originally contains all arms in Kj . Then, CO-AAE
eliminates those arms whose confidence intervals lie below
those of other arms without further consideration, and keeps
the rest in a dynamic candidate set of arms. The agent updates
the candidate set after pulling an arm and each time it receives
an observation from another agent. Note that communication
delays and action rates vary across agents. Hence, the recorded
number of observations and empirical mean rewards vary
among agents. To balance the number of observations among
different local arms, the agent at each time slot pulls the
arm within its local candidate set having the least number
of observations.

b) Communication Policy: In order to reduce commu-
nication complexity, it is also crucial for CO-AAE to decide
how to share information among different agents. During the
execution of CO-AAE, each agent updates its candidate set
with its received observations. When an arm is eliminated
from an agent’s candidate set, the agent broadcasts the index
of the eliminated arm, such that all agents can track the
candidate sets in others. In the following, we will introduce
our communication policy tailored to the CO-AAE algorithm.
The communication policy of CO-AAE generally follows the
following two rules.

1) An agent only broadcasts observations to agents whose
candidate sets contain more than one arm and contains
the arms which the observations are sampled on.

2) When there is only one arm in the candidate set, the
agent also broadcasts all observations to other agents.

By the first rule, the communication policy avoids transmit-
ting redundant observations to the agents that have finished
the learning task, i.e., those with only one arm in their
candidate sets. The second rule prevents “fast” agents that
quickly eliminated suboptimal arms from sending too many
observations to the “slow” agents containing the arms whose
means are close to the local optimal arm. Otherwise, sending
too many observations on those arms to “slow” agents may
incur O(T ) communication complexity in the extreme case.

Last, we note that the above communication policy can be
easily implemented in practical systems and works efficiently
in a fully distributed environment even when agents don’t
know parameters of other agents, such as action rates. Previous
communication policies in distributed bandits, such as those
in [13], [14] etc., require a centralized coordinator. It is also
worth noting that the above communication policy cannot be
applied to CO-UCB, since each agent fails to send out explicit
signals on suboptimal arms.

IV. THEORETICAL RESULTS

In this section, we present theoretical results for CO-UCB
and CO-AAE. For AC-CMA2B, the theoretical challenge is to
account for the constraint that agents can only pull arms from
predetermined (and possibly overlapping sets) of arms in the
regret bounds. This challenge can be tackled by incorporating
the agent-specific suboptimality gaps introduced in Eq. (2) into
the regret analysis. We provide upper and lower bounds for
the regrets in the AC-CMA2B setting, all of which depend on
the agent-specific suboptimality gaps ∆̃i. Proofs are given in
Section V and in our technical report [38].

A. An Overview of Our Results

Throughout this section, by policy, we mean the way that
each agent determines which arm to select in each decision
round. Let KL(u, v) denote the Kullback-Leibler divergence
between a Bernoulli distribution with parameters of u and v,
i.e., KL(u, v) = u log(u/v) + (1− u) log((1− u)/(1− v)).

Theorem 1: (Regret Lower Bound for AC-CMA2B) As-
sume θj = O(1) for j ∈ A and a policy that satisfies



Cj,t :=
{
i ∈ Kj : µ̂(i, n̂jt (i)) + cint(i, j, t) ≥ µ̂(i′, n̂jt (i))− cint(i, j, t), for any i′ ∈ Kj

}
. (4)

E [nT (i)] = o(T a) for any set of Bernoulli reward distribu-
tions, any arm i with ∆̃i > 0, and any a > 0. Then, for any
set of Bernoulli reward distributions, the expected regret of
any algorithm satisfies

lim infT→∞
E [RT ]

log T
≥

∑
i:∆̃i>0

∆̃i

KL(µi, µi + ∆̃i)
,

The proof leverages techniques similar to those for establishing
the classical result for the basic stochastic bandits [39] and is
given in [38].

To simplify the presentation of the regret bounds for both
algorithms, we introduce the following notations.

q1 := 2
∑
j∈A

Nj∑
l=1

∑
i∈Kj

lΘi

θj
δαl/θj ,

fi(δ) :=
∑
j∈Ai

min

{
djθj ,

2α log δ−1

∆2(i∗j , i)

}
,

where α > 2, δl/θj > 0 are parameters specified by the
algorithms, and δ := maxl δl/θj . Further, dj is the maximum
delay from other agents to agent j. The following theorem
characterizes the regret of CO-UCB with regard to specified
parameters α and δl/θj .

Theorem 2: (Expected regret of CO-UCB) When α > 2 and
δl/θj > 0 for any l and j, the expected regret of the CO-UCB
algorithm satisfies

E [RT ] ≤
∑

i:∆̃i>0

(
6α log δ−1

∆̃i

+ q1 + fi(δ)

)
.

We now proceed to further analyze the regret of the
CO-UCB. By setting δt = 1/t, we have

2
∑
j∈A

Nj∑
l=1

∑
i∈Kj

lΘi

θj
δαl/θj

= 2
∑
j∈A

Nj∑
l=1

∑
i∈Kj

Θi
1

(l/θj)α−1

≤ 2
∑
j∈A

Nj∑
l=1

Θ
1

(l/θj)α−1
≤ 2

α− 2

∑
j∈A

Θθα−1
j .

We further define

q2 :=
2

α− 2

∑
j∈A

Θθα−1
j .

Applying the above results and definitions to Theorem 2
yields the following corollary, which builds up a O(log T )
regret upper bound for the CO-UCB algorithm.

Corollary 1: With δt = 1/t and α > 2, the CO-UCB
algorithm attains the following expected regret

E [RT ] ≤
∑

i:∆̃i>0

(
6α log T

∆̃i

+ fi

(
1

T

)
+ 1

)
+ q2.

We also analyze the communication complexity of CO-UCB.
For simplicity, we assume that one message is needed to send
an observation from an agent to another one. The total number
observations made by all agents is ΘT . Then, broadcasting an
observation on arm i to all other agents results in at most
M communications messages. Hence, the total communica-
tion complexity of CO-UCB is O(MΘT ), which is formally
summarized in the following theorem.

Theorem 3: (Communication complexity of CO-UCB) The
communication complexity of CO-UCB is O(MΘT ).

Now, we proceed to present the regret and communication
complexity of CO-AAE. Similar to the definition of f , we
define

gi(δ) :=
∑
j∈Ai

min

{
djθj ,

8α log δ−1

∆2(i∗j , i)

}
.

The following theorem and corollary establishes an upper
bound on the expected regret of CO-AAE.

Theorem 4: (Expected regret for CO-AAE) With α > 2 and
δl/θj > 0 for any l and j, the expected regret of the CO-AAE
algorithm satisfies

E [RT ] ≤
∑

i:∆̃i>0

(
24α log δ−1

∆̃i

+ q1 + gi(δ) + 1

)
.

Corollary 2: When α > 2 and δt = 1/t, CO-AAE attains
the following expected regret

E [RT ] ≤
∑

i:∆̃i>0

(
24α log T

∆̃i

+ gi

(
1

T

)
+ 1

)
+ q2.

We have the following theorem providing an upper bound
for the communication complexity of CO-AAE.

Theorem 5: (Communication complexity of CO-AAE) Let
δt = 1/t and α > 2. The communication complexity of
CO-AAE satisfies

CT ≤
∑
i∈K

8α log T

∆̃2
i

+
∑
j∈A∗−i

djθj + q2 + 1

 (M +Mi).

B. Discussions

In the following, we discuss the significance of our results.



a) Regret Optimality of CO-UCB and CO-AAE: The first
observation regarding Corollaries 1 and 2 is that the terms
fi(1/T ) and gi(1/T ) of the regrets depend liearly on the delay
when it is not too large. Generally, fi(1/T ) and gi(1/T ) relate
to the number of outstanding observations that have not yet
arrived. Considering the fact that θj ≤ 1, and KL(µi, µi+∆̃i)
satisfies

2∆̃2
i ≤ KL(µi, µi+∆̃i) ≤

∆̃2
i

(µ(i) + ∆̃i)(1− µ(i)− ∆̃i)
, (5)

one observes that both regrets match the regret lower bound
in Theorem 1 when delays are bounded by a constant.

b) Comparison with Independent Policies without Coop-
eration: Without cooperation, we can derive a lower bound
for the regret of each agent j by Theorem 2.2 in [1], that is

lim infT→∞
E
[
RjT

]
log T

≥
∑

i∈Kj :∆(i∗j ,i)>0

∆(i∗j , i)

KL(µi, µi + ∆(i∗j , i))
.

Combined with Eq. (5), the best regret that any non-
cooperative algorithm can achieve for the integrated system
is no better than∑

j∈A

∑
i:i∈Kj ,∆(i∗j ,i)>0

log T

∆(i∗j , i)
=
∑
i∈K

∑
j∈Ai/A∗i

log T

∆(i∗j , i)
.

Note that, with bounded delays, the regret upper bounds
of both CO-UCB and CO-AAE is O

(∑
i:∆̃i>0 log T/∆̃i

)
. By

the definition of ∆̃i in Eq. (2), we have

O

∑
i∈K

∑
j∈Ai/A∗i

log T

∆(i∗j , i)

 ≥ O
 ∑
i:∆̃i>0

log T

∆̃i

 .

To conclude, a non-cooperative strategy will have a much
larger regret than CO-UCB and CO-AAE, especially when the
number of agents is large. In Section VI, we also numerically
compare our algorithms to the above independent algorithms
as baseline algorithms and the numerical results match our
above observation.

c) Comparison in a Special Case with Full Access to
the Arms: Theorems 2 and 4 show that the regret upper
bounds depend on the new suboptimality parameter ∆̃i, which
measures the minimum gap between arm i and local optimal
arms. Intuitively, the closer the expected reward of the local
optimal arm to that of the global optimal arm, the smaller the
regret will be. In the special case where each agent can access
the global arm set and delays are bounded, we have ∆̃i = ∆i

and thus the expected regret of either CO-UCB or CO-AAE
becomes O

(∑
i∈K(α log T )/∆i

)
. In the basic bandit model,

a learning algorithm suffers a regret lower bound that also
depends on ∆i, i.e.,

lim infT→∞
E [RT ]

log T
≥

∑
i:∆i>0

∆i

KL(µi, µi + ∆i)
.

Thus, by assuming a constant delay and Θ, the regret matches
the lower bound in the special case where agents possess full
access to the arms.

d) Performance with Large Delays: We are also inter-
ested in the performance of the algorithms when large delays
exist in the system. We take CO-AAE as an example. In the
extreme case where the maximum delay is arbitrarily large,
the regret bound given in Corollary 1 becomes

E [RT ] ≤
∑

i:∆̃i>0

16α log T

∆̃i

+
∑
j′∈Ai

8α log T

∆(i∗j′ , i)

+ q2 +K

=
∑

i:∆̃i>0

16α log T

∆̃i

+
∑
j∈A

∑
i∈Kj

8α log T

∆(i∗j , i)
+ q2 +K,

where the second term dominates, and the above regret
matches that of non-cooperative learning algorithms.

e) Communication Complexity: The regrets of CO-UCB
and CO-AAE both drop the heavy dependency on the num-
ber of agents, but they incur much different communica-
tion overheads. By our results, CO-AAE achieves much
lower communication complexity than CO-UCB, which is
O
(∑

i∈K(Mα log T )/∆̃2
i

)
. We leave it as an open problem to

design the algorithm which simultaneously attains the lowest
communication complexity.

V. PROOFS

In this section, we provide full proofs for Theorem 5, but
only proof sketches for theorems 2 and 4. For detailed proofs
of other theorems, we referred to our technical report in [38].

A. Proof Skeletons for Regret Upper Bounds in Theorems 2
and 4

We first provide a proof sketch for the regret of CO-UCB as
stated in Theorem 2. In our analysis, we categorize decisions
made by the agents into Type-I and Type-II decisions. Type-I
corresponds to the decisions of an agent when the mean values
of local arms lie in the confidence intervals calculated by the
agent. Otherwise, Type-II decision happens, i.e., the actual
mean value of some local arm is not within the calculated
confidence interval. More specifically, when agent j makes a
Type-I decision at time t, the following equation holds for any
i in Kj .

µ(i) ∈
[
µ̂
(
i, n̂jt (i)

)
− CI(i, j, t), µ̂

(
i, n̂jt (i)

)
+ CI(i, j, t)

]
.

The following Lemma provides the probability that a Type-I
decision happens at a particular decision round.

Lemma 1: At any time slot t when an agent makes its l-the
decision, it makes a Type-I decision with a probability at least
1− 2

∑
i∈Kj

lΘi

θj
δαl/θj .

In addition, we use the following lemma to upper bound the
number of pulls of suboptimal arms by agent j when Type-I
decision happens.

Lemma 2: If at any time t ≤ T agent j ∈ A∗−i makes a
Type-I decision and pulls arm i, i.e., Ijt = i, we have

n̂jt (i) ≤
2α log δ−1

∆2(i∗j , i)
.



Applying the above upper bound on the pulls of sub-optimal
arms, we can derive the regret of pulling suboptimal arms
when making Type-I decisions. Summing up the regret of
making Type-II decisions and regret of pulling suboptimal
arms when making Type-I decisions gives the final result stated
in Theorem 2.

The proof of Theorem 4 also leverages the notions of Type-
I/Type-II decisions. Specifically, with Type-I decisions, an
agent is able to keep the local optimal arm in its candidate
set and eventually converges its decisions to the local optimal
arm. Similarly, we have the following lemma.

Lemma 3: If at any time t ≤ T agent j ∈ A∗−i by CO-AAE
makes a Type-I decision and pulls arm i, i.e., Ijt = i, we have

n̂jt (i) ≤
8α log δ−1

∆2(i∗j , i)
+ 1.

We skip the rest of the proof for Theorem 4, since it follows
similar steps to that of Theorem 2.

B. A proof of Theorem 5

Generally, the proof contains two steps. The first one is
to upper bound the number of messages on suboptimal arms,
and the second one is to upper bound that on the local optimal
arms.

(1) We assume at time slot t, an agent in A∗−i makes a
Type-I decision to select arm i. From Lemma 3, we can upper
bound the total number of selection times by agents in Ai for
suboptimal arm i up to t by

8α log δ−1

∆2(i∗jM−i
, i)

+
∑
j∈A∗−i

djθj + 1,

where the second term corresponds to an upper bound for the
number of outstanding observations on arm i.

Combined with the fact that the expected number of Type-II
decisions for all agents is upper bounded by q, we can upper
bound the expected number of observations on arm i by agents
in A∗−i as follows.

8α log δ−1

∆2(i∗jM−i
, i)

+
∑
j∈A∗−i

djθj +
2

α− 2

∑
j∈A

Θθα−1
j + 1

=
8α log δ−1

∆2(i∗jM−i
, i)

+
∑
j∈A∗−i

djθj + q2 + 1.

Accordingly, the expected number of messages sent by A∗−i
to broadcast those observations on arm i is upper bounded by 8α log δ−1

∆2(i∗jM−i
, i)

+
∑
j∈A∗−i

djθj + q2 + 1

Mi.

Then we can further upper bound the total number of
messages sent by agents for broadcasting the observations of
their suboptimal arms by

∑
i∈K

 8α log δ−1

∆2(i∗jM−i
, i)

+
∑
j∈A∗−i

djθj + q2 + 1

Mi.

(2) By the rules of the CO-AAE algorithm, we have that
an agent broadcasts its observations only when its candidate
set has more than one arms. That is, the number of broadcast
observations on the optimal arm is not larger than

∑
i∈K

 8α log δ−1

∆2(i∗jM−i
, i)

+
∑
j∈A∗−i

djθj + q2 + 1

 .

Hence, the number of messages on the local optimal arms
is upper bounded by

∑
i∈K

 8α log δ−1

∆2(i∗jM−i
, i)

+
∑
j∈A∗−i

djθj + q2 + 1

M.

Combining the above two cases yields an upper bound on
the expected number of messages sent by the agents, which is

∑
i∈K

 8α log δ−1

∆2(i∗jM−i
, i)

+
∑
j∈A∗−i

djθj + q2 + 1

 (M +Mi)

=
∑
i∈K

8α log δ−1

∆̃2
i

+
∑
j∈A∗−i

djθj + q2 + 1

 (M +Mi)

=
∑
i∈K

8α log T

∆̃2
i

+
∑
j∈A∗−i

djθj + q2 + 1

 (M +Mi).

This completes the proof.

VI. NUMERICAL EXPERIMENTS

In this section, we illustrate the performance of our pro-
posed algorithms for the AC-CMA2B settings through numer-
ical experiments. For AC-CMA2B, our goal is to evaluate
the performance of CO-UCB and CO-AAE, including regret
and communication complexity, and compare them to that of
non-cooperative algorithms where each agent uses only its
local observations to find the best arm. Then, we investigate
the impact of communication delay on the performance of
proposed algorithms in AC-CMA2B.

A. Overview of Setup

We assume there are K = 100 arms with Bernoulli rewards
with average rewards uniformly randomly taken from Ad-
Clicks [40]. In experiments, we report the cumulative regret
after 30,000 rounds, which corresponds to the number of
decision rounds of the fastest agent. All reported values are
averaged over 10 independent trials and standard deviations
are plotted as shaded areas. The allocation of arms to agents
and number of agents differ in each experiment as explained
in the corresponding sections.

B. Experimental Results

a) Experiment 1: In the first experiment, we fix the total
number of arms to K = 20, and fix the number of arms
per agent to |Kj | = 6, j ∈ A. We further vary the number
of agents from M = 5 (light overlap) to M = 105 (heavy
overlap), with step size of 20.



(a) Cumulative regrets with different number of
agents.

(b) Average per-agent regret with different num-
bers of agents.

(c) Communication overhead.

Fig. 1. Simulation results for AC-CMA2B with different number of agents in the system.

(a) Per-agent regret by CO-UCB and IND-UCB. (b) Communication overhead. (c) Performance of CO-AAE with different val-
ues for communication delay.

Fig. 2. Simulation results for AC-CMA2B with different number of arms in each agent.

The results are shown in Figure 1. We see the observation of
better performance of CO-UCB and CO-AAE as compared to
IND-UCB and IND-AAE. Figure 1(a) shows a rapid increase
in the cumulative regret of non-cooperative algorithms, while
that of the cooperative algorithms remains the same despite the
increase in the number of agents when the number of agents
is larger than 65. Figure 1(b) depicts almost no change in the
average per-agent regret of IND-UCB and IND-AAE, and a
significant decrease for that of CO-UCB and CO-AAE, that is
due to greater overlap in the local arm sets.

Figure 1(c) shows an increase of communication overheads
for both CO-UCB and CO-AAE. Specifically, the CO-AAE
algorithm incurs much lower communication overhead than
CO-UCB in all experiments, validating our results in theo-
rems 3 and 5. Another important observation is that, with
more agents, the communication overheads for both algorithms
increase. That is because, when there are more agents, there
will be more possibility for agents to cooperate, with more
observations exchanged on overlapping arms.

b) Experiment 2: In the second experiment, we set
K = 100 arms, and M = 10 agents, and vary the number
of arms in each agent j from |Kj | = 10 with no overlap, to
|Kj | = {30, 50, 70, 90} with increasing degree of overlap. The
cumulative regret at 30000 rounds for five cases are reported
in Figure 2(a). Figure 2(a) shows that cooperative algorithms
significantly outperform non-cooperative algorithms in general

cases. One can see the gap between the performance of
cooperative and non-cooperative algorithms increases as the
overlap increases. This observation depicts that CO-UCB and
CO-AAE benefits from cooperation.

Figure 2(b) depicts the communication overheads of
CO-AAE and CO-UCB, as we vary the number of arms in each
agent from light overlap to heavy overlap of the local arm sets.
We observe that the communication overhead of CO-AAE is
much lower than CO-UCB in all experiments. In addition, the
communication overhead of CO-AAE increases as the number
of arms in each agent gets larger. That is because, when there
are more arms in each agent, it will take more time for the
agents to eliminate suboptimal arms, resulting in an increase
in the communication overhead by CO-AAE.

c) Experiment 3: Last, we investigate the performance
of the cooperative algorithm with different delays and take
CO-AAE as an example. Toward this, we consider three addi-
tional scenarios with average delays of 1000, 3000 and 5000
slots. At each time slot, the exact delay is taken uniformly
randomly in a given region. In Figure 2(c), we report the
evolution of cumulative regret of CO-AAE. The results show
that the regret of CO-AAE for AC-CMA2B increases and
approaches the regret of IND-AAE as the delay increases.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we study the cooperative stochastic ban-
dit problem with heterogeneous agents, with two algo-



rithms, CO-UCB and CO-AAE proposed. Both algorithms
attain the optimal regret, which is independent of the num-
ber of agents. However, CO-AAE outperforms CO-UCB
in communication complexity: CO-AAE needs to send
O
(∑

i∈K(Mα log T )/(∆̃2
i )
)

amount of messages, while the
communication complexity of CO-UCB is O(MΘT ).

This paper also motivates several open questions. A promis-
ing and practically relevant work is to design the algorithm
which simultaneously attains the lowest communication com-
plexity and the optimal regret independent of the number of
agents.
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