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In this paper, we study the multi-scale expert problem, where the rewards of different experts vary in different

reward ranges. The performance of existing algorithms for the multi-scale expert problem degrades linearly

proportional to the maximum reward range of any expert or the best expert and does not capture the non-

uniform heterogeneity in the reward ranges among experts. In this work, we propose learning algorithms that

construct a hierarchical tree structure based on the heterogeneity of the reward range of experts and then

determine differentiated learning rates based on the reward upper bounds and cumulative empirical feedback

over time. We then characterize the regret of the proposed algorithms as a function of non-uniform reward

ranges and show that their regrets outperform prior algorithms when the rewards of experts exhibit non-

uniform heterogeneity in different ranges. Last, our numerical experiments verify our algorithms’ efficiency

compared to previous algorithms.
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1 INTRODUCTION
In the past few decades, a broad range of online learning problems has been studied and applied to

various applications, such as online shortest path routing, online advertisement, channel allocation,

recommender systems, etc. This paper studies an extension of the expert problem that deals with

experts with scaled rewards in different ranges.

Prediction with Expert Advice (PEA) (a.k.a, the expert problem) has been extensively studied

since the seminal work [16, 25, 35], and further developed in follow-up works [13, 34]. This paper

focuses on the Hedge problem as a classic variant of PEA. The Hedge problem is a repeated game,

where an online learner must make sequential decisions over 𝑇 slots, choosing experts from a

given expert set of size 𝐾 . A series of rewards is associated with each expert, whose values are

generated by an oblivious adversary from a given range, e.g., from [0, 1] in the basic setting. At
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each slot, the online player selects an expert and earns the reward associated with the chosen

expert. The feedback model is full information, which means that the online player observes the

rewards of other experts after selecting an expert. The learner’s goal is to minimize its regret with

respect to the best expert. The most studied strategy for the above problem is called the Hedge

algorithm [16, 17], which achieves the order-optimal regret of 𝑂 (
√︁
𝑇 log𝐾) for the Hedge problem.

In this paper, we focus on a practically relevant variant of the Hedge problem, the multi-scale

Hedge problem or MSHedge, for short. The basic Hedge problem assumes a homogeneous reward

range for each expert, e.g., [0, 1]. In practice, however, there is a broad range of applications such

as dynamic pricing, portfolio selection, etc. (see §2.3 for motivating examples), where the rewards

of different experts are heterogeneous and scaled in different ranges. This motivates the model of

our interest, which involves multi-scale experts, those who possess non-uniform reward ranges. In

the MSHedge problem, the reward range of expert 𝑖 is [𝐿𝑖 ,𝑈𝑖 ], where𝑈𝑖 and 𝐿𝑖 serve as the upper
and lower bounds of rewards, whose values are known to the online player in advance. For ease of

technical presentation, we consider two different models for MSHedge: (1) MSHedge-U, which only

considers heterogeneity in upper bounds with lower bounds set to 0; and (2) MSHedge-LU, which
allows both upper and lower bounds to be heterogeneous. It is straightforward to show that the

naive extension of the Hedge algorithm to the multi-scale setting leads to a regret of𝑂 (𝑀
√︁
𝑇 log𝐾),

which linearly scales with 𝑀 , the maximum reward upper bound among experts. The algorithm

in [11] improves the regret to scale linearly proportional to the reward upper bound of the optimal

expert instead of the largest reward upper bound among all experts. We review the most relevant

literature in §2.4 and more extensively in §7.

Prior algorithms in the mainstream literature for the Hedge problem select experts in a proba-

bilistic manner in each round, i.e., the higher the cumulative empirical reward of an expert, the

higher the selection probability. However, this algorithmic idea ignores the impact of multi-scale

reward upper bounds on how fast experts with larger cumulative rewards can be changed over time.

More specifically, consider a scenario where the cumulative empirical reward of an expert with a

large upper bound falls behind some others. Then, the large upper bound of this expert provides

room for her to catch up with others quickly, and hence, the leading expert can be changed faster.

We propose learning algorithms that explicitly capture this observation in the decision-making

process, and we discuss them in the following.

1.1 Contributions
DRate: A hierarchical learning algorithm with differentiated learning rates. Our key idea is to

explicitly capture the above intuitive observation into the algorithm design. Towards this, we

propose to adaptively change the learning rate, and hence the selection probabilities of the expert,

based on both the cumulative feedback and upper bound of the leading experts. We develop

two learning algorithms based on Differentiated learning RATEs, called DRate-U and DRate-LU for

short, which work within the MSHedge-U and MSHedge-LU models, respectively. For simplicity of

presentation, we also refer to those two algorithms together as DRate.
To deal with the heterogeneity of multi-scale reward values, DRate partitions the set of experts

into smaller subsets, placing experts with similar reward ranges in the same subset. DRate recur-
sively continues to partition the experts into the new subsets and stops partitioning when the

upper bounds in the subset are uniform. With a given tree, the decision-making process of DRate
is as follows. At each round, DRate traverses the tree by recursively selecting nodes from the root

to a leaf node and possibly running the Hedge algorithm in the selected leaf node, and eventually,

returning an expert associated with the selected leaf node as its final decision.
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The core idea of DRate is to determine differentiated learning rates within node algorithms.

Generally, the learning rate determines the convergence speed of decisions to the leading child
node, i.e., the node with the largest cumulative reward. Intuitively, the leading children nodes with

different upper bounds have different impacts on the regret of a learning algorithm. Hence, the

learning rate should be carefully tuned based on the upper bounds of the leading child node. Take

MSHedge-U as an example. When the leading child node only contains experts with small upper

bounds, an algorithm has high risk to encounter large regret loss, since the leading child node

can be easily catch up with by the other one. In this case, a small or conservative learning rate

is preferable. On the other hand, when the leading child node contains experts with large upper

bounds, it usually takes longer for the other nodes to catch up. The algorithm may have more

confidence in the leading node, and thus a higher or aggressive learning rate is more efficient. In

§3, we present the details of DRate and rigorously explain the technical implementation of the

intuitive idea of hierarchical partitioning of experts and calculating the differentiated learning rates

to traverse the underlying tree.

Regret results for MSHedge-U. We first characterize the regret of DRate-U as a function of the

path from root to the node that includes the best expert (Theorem 1). By proper parameter setting

and with a balanced binary tree, we show that DRate-U achieves a regret of𝑂 (
√
𝑈1

∑
log𝐾

𝑙=1

√︁
𝑈

2
𝑙−1
𝑇 ),

where 𝑈1, w.l.o.g, is the largest reward upper bound assuming a descending order of experts based

on their upper bounds. Then in §4.3, we propose an algorithm that constructs an underlying tree that

minimizes the regret characterized in Theorem 1. We also demonstrate the significance of the regret

of DRate-U as compared to related results in §4.2.Whenmost reward upper bounds aremuch smaller

than the largest one, 𝑈1, DRate-U attains a much smaller regret than the Hedge algorithm, whose

regret is 𝑂 (𝑈1

√︁
𝑇 log𝐾). This also improves the result in [11], which is 𝑂 (max𝑖∈K 𝑈𝑖

√︁
𝑇 log𝐾) in

the worst case. We finally derive regret lower bounds for a special case of MSHedge with only two

experts and the general case with more than two experts. For the two-experts case, the lower bound

is Ω(
√
𝑈1𝑈2𝑇 ), which matches the regret upper bound of DRate-U.

Regret results for MSHedge-LU. The regret of DRate-LU also depends on how the tree is con-

structed. Given a tree, DRate-LU provides a provable regret, which is the cumulative regret over

the path from root to the node that includes the best expert (Theorem 4). Specifically, by placing

experts with similar reward ranges into the same node, DRate-LU can reduce the region that the

reward fluctuates in a node, as well as the regret. Note that we also discuss how our results applies

to other variations of the expert problem such as the Lipschitz expert setting in §5.3.

Numerical results. Last, we evaluate the performance of DRate through numerical experiments in

§6. Our numerical results using different heterogeneity scenarios of the multi-scale expert problem

shows that DRate outperforms the Hedge [16, 17], a variant of the Hedge [14], and the algorithm

in [11].

2 THE MULTI-SCALE EXPERT PROBLEM
In this section, we formally define the multi-scale expert problem, highlight a few motivating

examples, and finally review the most relevant prior results for this problem. A summary of main

notations in the system model and algorithms is given in Table 1.

2.1 Prediction with expert advice and the Hedge problem
Prediction with Expert Advice has been studied extensively by the community in past decades. The

study of PEA dates back to early work by Littlestone, Warmuth, and Vovk [16, 25, 35], and was

further developed in follow-up works [13, 34]. In this paper, we focus on an extended version of
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Table 1. Summary of main notations related to MSHedge and DRate

Notation Description

𝑇 The number of time slots, indexed by 𝑡

K Set of all expert, indexed by 𝑖 , and 𝐾 = |K |
𝑥𝑡 (𝑖) Reward of expert 𝑖 at time slot 𝑡

𝑈𝑖 Reward upper bound of expert 𝑖

𝐿𝑖 Reward lower bound of expert 𝑖

𝐼𝑡 The selected expert of the online player at time slot 𝑡

𝑣 A node (either internal or leaf) in the decision tree of DRate
𝑜 The root (sink) node of the decision tree in DRate
𝑣𝑙 The left child of node 𝑣

𝑣𝑟 The right child of node 𝑣

𝑣𝑛𝑝 The 𝑛-th ancestor of node 𝑣; specifically, we simplify 𝑣’s parent node, 𝑣1

𝑝 , as 𝑣𝑝

𝑣∗ The leaf node containing the optimal expert

path(𝑣) The set of nodes in the path from the root to node 𝑣

𝑈𝑣 The largest reward upper bound of the experts in node 𝑣, i.e.,𝑈𝑣 = max𝑖∈𝑣 𝑈𝑖

𝐿𝑣 The smallest reward lower bound of the experts in node 𝑣, i.e., i.e., 𝐿𝑣 = min𝑖∈𝑣 𝐿𝑖
𝑥𝑡 (𝑣) Feedback of node 𝑣 at time slot 𝑡

�̂�𝑡 (𝑣) Cumulative feedback of node 𝑣 up to time slot 𝑡

[1 (𝑣) and [2 (𝑣) The differentiated learning rates for node 𝑣

[′ (𝑣) The learning rate of the Hedge algorithm in the leaf node 𝑣

𝛼𝑡 (𝑣) The child of node 𝑣 which has larger or equal cumulative reward at time 𝑡

𝛽𝑡 (𝑣) The child of node 𝑣 which has smaller cumulative reward at time 𝑡

𝑝𝑡 (𝑣) The selection probability of node 𝑣 at time slot 𝑡

𝑝𝑡 (𝑣) The selection probability of child node 𝑣 by node 𝑣𝑝 at time slot 𝑡

𝑝𝑡 (𝑖) The selection probability of expert 𝑖 by the leaf node 𝑣 containing expert 𝑖

𝑅𝑇 Regret over𝑇 time slots

𝑅𝑇 (𝑣) Individual regret of node 𝑣 over𝑇 time slots

the Hedge problem, as a classic variant of PEA. The Hedge problem is a repeated game, where an

online learner is required to make sequential decisions, choosing experts from a given expert set of

size 𝐾 . We denote the expert set as K = [𝐾]. The game lasts 𝑇 time slots. Associated with each

expert 𝑖 is a series of rewards, 𝑥𝑖 (𝑡), 𝑡 = 1, 2, . . . ,𝑇 , assigned over time, whose values are generated

arbitrarily from a given range. In the standard Hedge setting, the range of the reward is usually

[0, 1], and rewards are generated by an oblivious adversary that is unaware of the actions of the

online player. At time slot 𝑡 , the online player selects an expert 𝐼𝑡 , and earns the reward associated

with the selected expert, i.e., 𝑥𝑡 (𝐼𝑡 ). The feedback model is full information, which means that the

online player can observe the rewards of every expert, 𝑥𝑡 (𝑖), 𝑖 ∈ [𝐾], after selecting an expert. The

goal of the learner is to receive as much cumulative reward as possible, and her performance can

be measured by comparing the cumulative rewards of the learner and that of the optimal expert,

i.e., the one with the largest cumulative reward. To this end, we define pseudo-regret as

𝑅𝑇 := max

𝑖∈K

𝑇∑︁
𝑡=1

𝑥𝑡 (𝑖) − E
[
𝑇∑︁
𝑡=1

𝑥𝑡 (𝐼𝑡 )
]
, (1)

where the first term on the right-hand side expresses the cumulative reward of the best expert

in hindsight, and the second one corresponds to the cumulative expected reward received by the

learning algorithm. In the rest of the paper, we refer to pseudo-regret simply as regret. The most

commonly studied strategy for the above problem is called the Hedge algorithm [16, 17], which

achieves an order-optimal regret of 𝑂 (
√︁
𝑇 log𝐾) for the Hedge problem. The Hedge problem is a
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well-established framework for learning under uncertainty, and since the early works in the 1990s

there has been substantial literature tackling the extended variants or developing better algorithms.

We review the most relevant literature in §2.4 and more extensively in §7.

2.2 MSHedge: Hedge with multi-scale experts
The basic versions of the above framework assume a homogeneous reward range, [0, 1] for each
expert. In practice, however, there are a broad range of applications where the rewards of different

experts are constrained in different ranges. This motivates the model of our interest, which involves

multi-scale experts, those who possess non-uniform reward ranges.

In the Hedge problem with multi-scale experts, or MSHedge for short, the reward range of expert

𝑖 is defined as [𝐿𝑖 ,𝑈𝑖 ], where𝑈𝑖 and 𝐿𝑖 serve as the upper and lower bounds of rewards, and satisfy

𝑈𝑖 > 𝐿𝑖 ≥ 0. For ease of technical presentation of the proposed algorithms, we consider two

different models for MSHedge: the first one, referred to as MSHedge-U, only involves heterogeneity

in upper bounds, and we set 𝐿𝑖 = 0, 𝑖 ∈ K ; and the second one, referred to as MSHedge-LU, allows
both upper and lower bounds to be non-uniform. We assume the bounds for those reward ranges

are known to the learning algorithm as prior knowledge. In MSHedge, we continue to use the regret
defined in Equation (1) as the performance metric for a learning algorithm. Yet, the regrets of

learning algorithms in MSHedge are expected to depend on the non-uniform reward ranges, instead

of a normalized uniform reward range in the standard Hedge setting, whose influence in regret is

usually ignored. To distinguish our multi-scale setting from the basic uniform setting, we refer to

the regret in the multi-scale case as the non-uniform regret.

2.3 Motivating examples for multi-scale experts
MSHedge can find many practical applications in real world and we highlight a few in the following.

The first application is online auction and dynamic pricing. The dynamic pricing problem has

been extensively studied using a broad range of online learning tools including online algorithms,

multi-armed bandits, and expert problem [10]. In its basic setting, upon arrival of a buyer, the

online decision maker posts a price for an item, and the buyer buys the item only if the posted price

is less than their private valuation. In the context of MSHedge, each possible posted price could be

considered as an expert with possible rewards of either 0 when the buyers rejects the posted price,

or𝑈 > 0, when the buyer buys the item.

Another example is portfolio selection [9, 11], each type of asset is modeled as an expert, and the

learning algorithm decides on the portfolio of assets at each round with the aim to maximize earned

profits. In practice, one usually observes heavy-tailed price fluctuations in a financial market, and

the prices of different types of assets can vary in much different ranges. Hence, the online learning

model must define different reward ranges for each expert.

The last example is the online learning algorithm in recommender systems that are allowed

to provide each user with a set of advertisements with different weights, rather than individual

one, and the total weights of the recommendations in the set must respect some constraints. For

example, a webpage can only contain a finite number of advertisements, since the sum of the sizes

of the advertisements have to respect the capacity of the webpage. The reward is proportional

to the number of advertisements that the user clicks, and the upper reward limit of a set of

recommendations is the sum of those for each individual advertisement in this set. Also, the reward

ranges are known to the online learner, since they can observe the advertisements in each set.

2.4 The state-of-the-art results for MSHedge
An initial idea for extending the uniform reward range assumption in the basic Hedge model to

multi-scale setting is to normalize the reward ranges based on the largest value and then study
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how the normalization of this range impact the regret of existing algorithms. For example, scaling

the rewards by 𝑈 = max𝑖 𝑈𝑖 , yields a new reward range for rewards, [0,𝑈 ]. Without any major

modification, the algorithms, such as Hedge [6], developed for the [0, 1] case guarantee the reward
bound

𝑋 ∗𝑇 −
√︃
𝑈𝑋 ∗

𝑇
log𝐾,

where 𝑋 ∗
𝑇
is the cumulative reward of the best expert over the time horizon, which could be

as large as 𝑈𝑇 . Hence, the algorithm suffers a regret of 𝑂 (𝑈
√︁
𝑇 log𝐾) in the worst case, which

degrades linearly with respect to the largest reward upper bound of experts. To improve this linear

dependence on reward upper bound, there has been another study in expert problem with non-

uniform reward ranges [10], where a model similar to our first model MSHedge-U is tackled. In [10]

a modified definition of the regret is used to analyze the performance of the proposed learning

algorithms. Specifically, with different reward ranges across experts, they define the action-specific

regret, 𝑅𝑇,𝑖 , which is

𝑅𝑇,𝑖 :=

𝑇∑︁
𝑡=1

𝑥𝑡 (𝑖) − E
[
𝑇∑︁
𝑡=1

𝑥𝑡 (𝐼𝑡 )
]
. (2)

Specifically, we have 𝑅𝑇 = max𝑖∈K 𝑅𝑇,𝑖 . Then, using the action-specific regret, a multi-scale learning

algorithm is devised and its performance is demonstrated by the development of upper bounds

of the action-specific regrets for each expert 𝑖 . The regret of the proposed algorithm for expert

𝑖 depends linearly on 𝑈𝑖 , and thus the worst-case regret defined in Equation (1) depends on the

reward upper bound of the best expert. While this is an improvement over dependence on the

largest reward upper bound among any expert (either optimal or sub-optimal), in the worst case,

where the best expert has the largest upper bound, the regret reduces to the standard result of the

Hedge algorithm, i.e., 𝑂 (max𝑖∈K 𝑈𝑖
√︁
𝑇 log𝐾). In this paper, we will develop learning algorithms

that explicitly take into account different reward ranges of experts in their decision making.

Last, we note that in another direction, some works consider additional structured settings such

as Lipschitz continuity for the expert problem, which implicitly introduce heterogeneity to the

reward ranges. In particular, dependence or correlation can be introduced across the rewards of

different experts, resulting in various fluctuations of the rewards. A classic example of the structured

setting is the Lipschitz expert problem[27, 37], where the indices of experts lie in a metric space and

the rewards of the experts have to satisfy the Lipschitz continuity condition. In §5.3, we compare

our model with these structured settings. Specifically, we show that with some modifications of our

proposed algorithm for the MSHedge model, we can extend our algorithms to capture the Lipschitz

expert problem as well.

3 THE DRATE ALGORITHM
In this section, we introduce the DRate-U algorithm for the first model of MSHedge, where the reward
upper bounds of experts scale in different values. The contribution of experts with heterogeneous

reward upper bounds to regret is different, so, our high-level idea is to adopt a hierarchical learning

policy to effectively capture the multi-scale upper bounds. More specifically, DRate-U leverages
a tree structure to categorize the experts with different upper bounds, and tackles the original

learning problem hierarchically by traversing through the constructed tree.

In Figure 1, we demonstrate the structure of the decision tree where the expert set K resides at

the root and each internal node represents a subset of experts. Each node in the tree associated

with more than one experts with different upper bounds can be further partitioned into two smaller

subsets as its children. The algorithm may choose not to further partition the node when the upper

bounds of the contained experts are the same. Hence, a leaf node may contain more than one expert.
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Root Node

Internal NodeInternal Node

Leaf Node Leaf Node Leaf Node Leaf Node

Part 1: 
Hierarchical 
Learning 
Policy 
Implementing 
Node 
Algorithms 

Part 2: 
Hedge 
Algorithms 
without Set 
Partitioning

Fig. 1. The hierarchical structure of the DRate-U algorithm

The performance of DRate-U closely depends on how the tree is constructed. However, we first

need to characterize the regret performance of the node algorithm in the non-leaf nodes, and then,

based on the characterization of the regret, we can optimize the construction of the tree. Hence, we

discuss the optimal tree construction given the expert upper bounds in §4.3.

With a given tree, the decision making process of DRate-U is as follows. At each time slot,

DRate-U traverses the tree by recursively calling a node algorithm
1
from the root to a leaf node

and possibly running the Hedge algorithm in the selected leaf node. Eventually, it returns an expert

associated with the selected leaf node as its final decision. In DRate-U, the decision making in each

non-leaf node can be considered as an independent two-expert problem, where children of the node

are taken as super experts. The node algorithm plays a critical role in dealing with multi-scale

experts in DRate-U, where a function parameterized by a learning rate is maintained to generate

the selection probabilities of the child nodes. The node algorithm in DRate-U adjusts the learning

rate based on the upper bounds of the leading child node, i.e., the one with the larger cumulative

reward. We present the intuitions and details in §3.1.

By formal definition of the main notations in Table 1, we proceed to explain the the technical

details of the algorithm. Let 𝑣 denote a node (either internal or root) in the tree. The left and right

children of node 𝑣 are denoted as 𝑣𝑙 and 𝑣𝑟 , respectively.

At time slot 𝑡 , DRate-U determines the selection probability of choosing each child of node 𝑣 ,

which is denoted as 𝑝𝑡 (𝑣𝑙 ) and 𝑝𝑡 (𝑣𝑟 ), respectively. The values of 𝑝𝑡 (𝑣𝑙 ) and 𝑝𝑡 (𝑣𝑟 ) are determined

based on past reward feedback, and their sum is one, i.e., 𝑝𝑡 (𝑣𝑙 ) + 𝑝𝑡 (𝑣𝑟 ) = 1. Given per-node

selection probabilities, we can derive the actual selection probability of each node, denoted as 𝑝𝑡 (𝑣),
which is

𝑝𝑡 (𝑣) =
∏

𝑣′∈path(𝑣)
𝑝𝑡 (𝑣 ′),

where path(𝑣) denotes the set of nodes on the path from the root to node 𝑣 .

When DRate-U commits to an expert, rewards associated with experts are revealed and DRate-U
updates the feedback of each node. We denote 𝑥𝑡 (𝑣) to be the feedback of node 𝑣 at time 𝑡 and

define it as

𝑥𝑡 (𝑣) :=
∑︁
𝑖∈𝑣

𝑝𝑡 (𝑖)
𝑝𝑡 (𝑣)

𝑥𝑡 (𝑖) .

1
In our terminology, the algorithm executed by a non-leaf node in the tree is called the node algorithm.
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Note that 𝑥𝑡 (𝑣) is the expected reward conditioned on node 𝑣 is selected. One can calculate 𝑥𝑡 (𝑣)
recursively using feedback from the children, i.e.,

𝑥𝑡 (𝑣) = 𝑝𝑡 (𝑣𝑙 )𝑥𝑡 (𝑣𝑙 ) + 𝑝𝑡 (𝑣𝑟 )𝑥𝑡 (𝑣𝑟 ). (3)

Last, let 𝑋𝑡 (𝑣) denote the cumulative feedback of node 𝑣 up to time slot 𝑡 , that is

𝑋𝑡 (𝑣) :=

𝑡∑︁
𝜏=1

𝑥𝜏 (𝑣).

For consistency, we set 𝑋0 (𝑣) = 0.

3.1 Differentiated learning rates for the node algorithm
Now we focus on how to select a child node in the node algorithm of DRate-U, where the goal is to
solve a two-expert problem. The idea in the mainstream literature is to select the leading expert, i.e.,

the expert with the larger cumulative feedback, with higher probability. However, this approach

ignores the impact that multi-scale reward upper bounds can have on how fast the leading expert

may be changed over time. In contrast, we propose to adaptively change the learning rate, and

hence the selection probabilities, depending on both the cumulative feedback and upper bound of

the leading expert. We first give an intuition and then formally present the technical idea.

Let 𝛼𝑡 (𝑣) be the child of node 𝑣 with larger cumulative feedback at time 𝑡 , and 𝛽𝑡 (𝑣) be the other
child, i.e., 𝑋𝑡 (𝛼𝑡 (𝑣)) ≥ 𝑋𝑡 (𝛽𝑡 (𝑣)). There are two cases to consider: Case-1 occurs when 𝛼𝑡 (𝑣) is the
node with the larger upper bound, i.e., 𝑈𝛼𝑡 (𝑣) ≥ 𝑈𝛽𝑡 (𝑣) ; and Case-2, when 𝛼𝑡 (𝑣) is the node with
smaller upper bound than that of 𝛽𝑡 (𝑣), i.e.,𝑈𝛼𝑡 (𝑣) < 𝑈𝛽𝑡 (𝑣) . The key idea is to assign aggressive (or

larger) learning rate to Case-1 and a conservative (or smaller) learning rate when facing Case-2.

The reason is intuitive: with multi-scale upper bounds, an important observation is that when

Case-2 occurs, i.e., the cumulative feedback of the expert with larger upper bounds falls behind, the

risk of large regret is higher, since the larger upper bound provides a room for the expert to quickly

catch up with the cumulative feedback of the other node. Thus, in Case-2, a small or conservative

learning rate is preferable. On the other hand, in Case-1, i.e., when the expert with lower upper

bound falls behind, it takes longer for it to catch up with the other one, so, it is safe to select a more

aggressive learning rate.

With the above intuition, we proceed to formally determine the learning rates in the node algo-

rithm of DRate-U. For node 𝑣 , the node algorithm maintains two learning rates [1 (𝑣) and [2 (𝑣) as-
sociated with Case-1 and Case-2, respectively. During the learning process, the learning rates [1 (𝑣)
and [2 (𝑣) may be alternatively adopted by DRate-U. Further, define𝐷𝑡 (𝑣) := 𝑋𝑡 (𝛼𝑡 (𝑣)) − 𝑋𝑡 (𝛽𝑡 (𝑣)),
𝑡 = 0, 1, 2, . . . ,𝑇 , as the gap between the cumulative feedback of the two experts up to time 𝑡 . Then,

we set the selection probabilities for the two children of node 𝑣 as follows

𝑝𝑡+1 (𝛼𝑡 (𝑣)) = 1 −
(

1

2

− 𝐷𝑡 (𝑣)[𝑧 (𝑣)
)+
, 𝑝𝑡+1 (𝛽𝑡 (𝑣)) =

(
1

2

− 𝐷𝑡 (𝑣)[𝑧 (𝑣)
)+
, (4)

where [𝑧 (𝑣), 𝑧 ∈ {1, 2} represents the learning rates used in the two cases and plays a critical role

in determining the speed at which the node algorithm converges to the better child. The larger

[𝑧 (𝑣) is, the faster the algorithm converges to the leading child. In our analysis, we derive values

[1 (𝑣) and [2 (𝑣) that optimize the regret.

3.2 The Hedge algorithm in leaf nodes with multiple experts
Once a leaf node with more than one experts is selected, DRate-U calls the Hedge algorithm to

select an expert in the leaf node as the final decision. For any leaf node 𝑣 with more than one expert,
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Algorithm 1 Node algorithm for node 𝑣 at time 𝑡 (subscript 𝑡 is dropped)

1: Initialization: 𝛼 (𝑣) = 𝑣𝑙 , 𝛽 (𝑣) = 𝑣𝑟 , [1 (𝑣) > 0, [2 (𝑣) > 0, �̂� (𝑣𝑙 ) = 0, �̂� (𝑣𝑟 ) = 0

2: if node 𝑣 is selected by 𝑣𝑝 then ⊲ Select a child node
3: if 𝑈𝛼 (𝑣) ≥ 𝑈𝛽 (𝑣) then ⊲ represents Case-1
4: [𝑧 (𝑣) ← [1 (𝑣)
5: end if

6: if 𝑈𝛼 (𝑣) < 𝑈𝛽 (𝑣) then ⊲ represents Case-2
7: [𝑧 (𝑣) → [2 (𝑣)
8: end if

9: Select a child node with probability 𝑝𝑡 (𝛼 (𝑣)) and 𝑝𝑡 (𝛽 (𝑣)) , whose values are given in Equation (4)

10: end if

11: Receive feedback from node 𝑣’s children, 𝑥𝑡 (𝑣𝑙 ) and 𝑥𝑡 (𝑣𝑟 ) ⊲ Update feedback of nodes
12: Update �̂� (𝑣𝑙 ) and �̂� (𝑣𝑟 ) : �̂� (𝑣𝑙 ) ← �̂� (𝑣𝑙 ) + 𝑥𝑡 (𝑣𝑙 ) , �̂� (𝑣𝑟 ) ← �̂� (𝑣𝑟 ) + 𝑥𝑡 (𝑣𝑟 )
13: Calculate the feedback of node 𝑣, 𝑥𝑡 (𝑣) , based on Equation (3), which will be used to calculate the feedback of node 𝑣𝑝

14: if �̂� (𝛼 (𝑣)) < �̂� (𝛽 (𝑣)) then
15: Swap the values of 𝛼 (𝑣) and 𝛽 (𝑣)
16: end if

DRate-U maintains a series of weights𝑤𝑡 (𝑖), 𝑖 ∈ 𝑣 . For convenience, we set𝑤0 (𝑖) = 1. At each time

slot 𝑡 , DRate-U normalizes the rewards observed on each expert and update the weights as follows.

𝑤𝑡 (𝑖) = 𝑤𝑡−1 (𝑖) · exp([ ′(𝑣)𝑥𝑡 (𝑖)/𝑈𝑖 ),

where [ ′(𝑣) > 0 is the learning rate in the Hedge algorithm. Then, the selection probability of

expert 𝑖 in node 𝑣 at time slot 𝑡 + 1 is

𝑝𝑡+1 (𝑖) =
𝑤𝑡 (𝑖)∑
𝑖′∈𝑣𝑤𝑡 (𝑖 ′)

, 𝑖 ∈ 𝑣 .

For consistency, we set 𝑝𝑡 (𝑖) = 1 if there is only one expert in a leaf node. Let 𝑣 be the leaf node

that contains expert 𝑖 . Then, the actual selection probability of expert 𝑖 at time slot 𝑡 is

𝑝𝑡 (𝑖) = 𝑝𝑡 (𝑣)𝑝𝑡 (𝑖) =
©«

∏
𝑣′∈path(𝑣)

𝑝𝑡 (𝑣 ′)
ª®¬𝑝𝑡 (𝑖).

Last, we recall that our discussion on how to design a decision tree for the DRate-U algorithm
is given in §4.3. Our regret analysis in the next section characterizes the regret of DRate-U as

a function of the regret introduced by the nodes in path(𝑣∗) (see Lemma 1). Thus, the optimal

construction of the underlying tree should minimize the aggregate regret over different paths.

4 REGRET ANALYSIS FOR DRATE-U

We first state our main results and remarks for the regret of DRate-U in §4.1. In §4.2, we provide a

few examples to clarify the significance of the regret of DRate-U. The regret of DRate-U depends on
how the underlying tree structure is constructed. In §4.3, we present an algorithm for the optimal

construction of the tree.

4.1 Main results and remarks
We define the notion of node regret of DRate-U. In the following, non-leaf nodes refer to either the

root or internal nodes. All proofs are given in the appendix of the paper.

Definition 1. (Node Regret) Given a tree for DRate-U, define node regret 𝑅𝑇 (𝑣) for node 𝑣 over
horizon 𝑇 as
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(1) If 𝑣 is a non-leaf node,

𝑅𝑇 (𝑣) := max

{
𝑇∑︁
𝑡=1

𝑥𝑡 (𝑣𝑙 ),
𝑇∑︁
𝑡=1

𝑥𝑡 (𝑣𝑟 )
}
−

𝑇∑︁
𝑡=1

(𝑝𝑡 (𝑣𝑙 )𝑥𝑡 (𝑣𝑙 ) + 𝑝𝑡 (𝑣𝑟 )𝑥𝑡 (𝑣𝑟 )) . (5)

(2) If 𝑣 is a leaf node,

𝑅𝑇 (𝑣) :=

{
max𝑖∈𝑣

∑𝑇
𝑡=1

𝑥𝑡 (𝑖) −
∑𝑇
𝑡=1

∑
𝑖∈𝑣 𝑝𝑡 (𝑖)𝑥𝑡 (𝑖), |𝑣 | > 1;

0, |𝑣 | = 1

(6)

The first term on the right-hand side of Equation (5) corresponds to the maximum cumulative

feedback of the children of node 𝑣 , and the second term corresponds to the cumulative expected

feedback of node 𝑣 . Generally, the node regret of node 𝑣 characterizes the speed that its decisions

converge to the child generating the larger cumulative feedback.

The following lemma implies that the regret of DRate-U is upper bounded by the sum of the

node regrets on the path from the root node to the leaf node which contains the optimal expert.

Lemma 1. The regret of DRate-U satisfies

𝑅𝑇 ≤
∑︁

𝑣∈path(𝑣∗)
𝑅𝑇 (𝑣).

With Lemma 1, the remaining analysis is to upper bound the node regret for each non-leaf node

and the leaf node containing the optimal expert, respectively.

Let 𝑈𝑣 be the maximum reward upper bound of the experts in node 𝑣 , i.e., 𝑈𝑣 := max𝑖∈𝑣𝑈𝑖 . In
the following proposition, we provide an upper bound for the node regret of any non-leaf node 𝑣 ,

which depends on the largest reward upper bounds of 𝑣 ’s children, i.e.,𝑈𝑣𝑙 and𝑈𝑣𝑟 .

Proposition 1. (Node Regret of a Non-leaf Node) Let 𝑣 be a non-leaf node of the tree of DRate-U,
assume𝑈𝑣𝑙 ≥ 𝑈𝑣𝑟 . With learning rates [1 (𝑣) > 0 and [2 (𝑣) > 0, we have

𝑅𝑇 (𝑣) ≤
1

[1 (𝑣)
+𝑇𝑈 2

𝑣𝑟
[1 (𝑣) +

1

[2 (𝑣)
+ 2𝑇𝑈𝑣𝑙𝑈𝑣𝑟[2 (𝑣) +𝑈𝑣𝑙 +𝑈𝑣𝑟 .

Proposition 2. (Node Regret of a Leaf Node, Theorem 1.5 in [18]) Let 𝑣 be a leaf node in the
tree of DRate-U and |𝑣 | > 1. With learning rate [ ′(𝑣) > 0, we have

𝑅𝑇 (𝑣) ≤ [ ′(𝑣)𝑈 2

𝑣𝑇 +
log |𝑣 |
[ ′(𝑣) .

By assuming, without loss of generality, 𝑈𝑣𝑙 ≥ 𝑈𝑣𝑟 holds for every non-leaf node 𝑣 in the

constructed tree, and combining propositions 1 and 2, and Lemma 1, we present the main result.

Theorem 1. (Regret of DRate-U) With learning rates [1 (𝑣) > 0 and [2 (𝑣) > 0 for non-leaf node
𝑣 and [ ′(𝑣 ′) > 0 for leaf node 𝑣 ′, the regret of DRate-U satisfies the following upper bound.

𝑅𝑇 ≤
∑︁

𝑣∈path(𝑣∗)\{𝑣∗ }

(
1

[1 (𝑣)
+𝑇𝑈 2

𝑣𝑟
[1 (𝑣) +

1

[2 (𝑣)
+ 2𝑇𝑈𝑣𝑙𝑈𝑣𝑟[2 (𝑣) +𝑈𝑣𝑙 +𝑈𝑣𝑟

)
+𝑄1,

where 𝑄1 = [
′(𝑣∗)𝑈 2

𝑣∗𝑇 +
log |𝑣∗ |
[′ (𝑣∗) , if |𝑣

∗ | > 1; 0, otherwise.

The following corollary gives the result of DRate-U under the learning rates minimizing the

upper bound in Theorem 1.
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Fig. 2. Balanced binary tree for DRate-U.

Corollary 1. With [1 (𝑣) = 1/(𝑈𝑣𝑟
√
𝑇 ), [2 (𝑣) = 1/

√︁
2𝑈𝑣𝑙𝑈𝑣𝑟𝑇 , and [

′(𝑣 ′) =
√︁

log |𝑣 ′ |/𝑇 /𝑈𝑣′ ,
the regret of DRate-U satisfies the following upper bound.

𝑅𝑇 ≤
∑︁

𝑣∈path(𝑣∗)\{𝑣∗ }

(√︁
2𝑈𝑣𝑙𝑈𝑣𝑟𝑇 +𝑈𝑣𝑟

√
𝑇

)
+𝑈𝑣∗

√︁
𝑇 log |𝑣∗ |.

The above results imply that the regret of DRate-U depends on theway that the tree is constructed.
In the following corollary, we further specify the regret of DRate-U when the expert set is fully

partitioned into a balanced binary tree as shown in Figure 2.

Corollary 2. (Regret of DRate-U with a Balanced Binary Tree) Given a balanced binary tree in
DRate-U, assuming 𝑈1 ≥ 𝑈2 ≥ · · · ≥ 𝑈𝐾 , and with [1 (𝑣) = 1/(𝑈𝑣𝑟

√
𝑇 ), [2 (𝑣) = 1/

√︁
2𝑈𝑣𝑙𝑈𝑣𝑟𝑇 , the

regret of DRate-U satisfies

𝑅𝑇 = 𝑂

(√︁
𝑈1

log𝐾∑︁
𝑙=1

√︁
𝑈

2
𝑙−1
𝑇

)
.

Remark 1. (Comparison with the Hedge Algorithm [18]) We first clarify that the regret in Corol-
lary 2 is not always better than the optimal result by Hedge. For example, when all upper bounds
are all equal to 𝑈 , DRate-U yields a regret of 𝑂 (𝑈

√
𝑇 log𝐾), while Hedge achieves a better regret of

𝑂 (𝑈
√︁
𝑇 log𝐾). However, DRate-U achieves much better performance than Hedge in heterogeneous

settings with non-uniform upper bounds across experts. We further scrutinize this claim by providing
several examples of non-uniform upper bound structures in §4.2. A promising future direction is to
develop an algorithm that can simultaneously achieve the optimal regret bound under both uniform
and non-uniform settings.

Remark 2. (Comparison with Multi-scale Learning Algorithm in [11]) The proposed algorithm
in [11], analyzes the results for an action-specific regret defined in Equation (2) through a multi-scale
learning algorithm. Specifically, the action-specific regret for expert 𝑖 is 𝑂 (𝑈𝑖

√︁
𝑇 log(𝐾𝑇 )). Hence, the

real regret of the multi-scale learning algorithm proposed in [11] is 𝑂 (𝑈𝑖∗
√︁
𝑇 log(𝐾𝑇 )), which can

be as large as 𝑂 (max𝑖∈[𝐾 ] 𝑈𝑖
√︁
𝑇 log(𝐾𝑇 )) in the worst case, similar to the result by Hedge. Hence,

the similar arguments for non-uniform upper bounds in Remark 1 could be applied to the algorithm
proposed in [11]. Note that in addition to more analytical examples in §4.2, we numerically compare
the performance of these algorithms with DRate-U in §6.
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In the following, we present the lower bounds for MSHedge. We first present the lower bound for

a special case with two experts.

Theorem 2. Consider a two-expert problem, where the upper bounds is𝑈1 and𝑈2, respectively.
The regret of any algorithm is Ω

(√
𝑈1𝑈2𝑇

)
.

Combined with Corollary 1, we observe that the above bound is tight for the two expert case.

It is much more complicated to analyze the lower bound in the general case, due to the difficulty

in summarizing the lower bounds with different values of the upper bounds. In the following, we

provide a (loose) lower bound for the general MSHedge problem with more than two experts.

Theorem 3. Consider the MSHedge problem with 𝐾 experts. For any 1 ≤ 𝑖 ≤ 𝐾 , the regret of any
algorithm is Ω

(
1

num(𝑈𝑖 )
∑
𝑖′:𝑈𝑖′ ≥𝑈𝑖

√︁
𝑈𝑖𝑈𝑖′𝑇 log num(𝑈𝑖 )

)
, where num(𝑈𝑖 ) denotes the number of experts

whose upper bounds are larger than or equal to𝑈𝑖 .

Remark 3. Assume𝑈1 ≥ 𝑈2 ≥ · · · ≥ 𝑈𝐾−1 ≥ 𝑈𝐾 . A straightforward lower bound for the MSHedge
algorithm is 𝑂 (𝑈𝑘

√︁
𝑇 log𝐾). Theorem 3 improves the naive lower bound, since we can easily derive

a tighter lower bound from it, which is Ω( 1

𝐾

∑𝐾
𝑖=2

√︁
𝑈𝑖𝑈𝐾𝑇 log𝐾). Also, in the uniform setting with

reward ranges in [0,𝑈 ] for each expert, the above lower bound becomes tight.

4.2 Additional examples on the impact of tree structure on the regret
In this section, we provide two special instances of MSHedge with particular structures on non-

uniform reward upper bounds of experts, and show how they require different tree structures to

achieve the optimal value of regret for DRate-U as characterized in Theorem 1.

Example 1. Consider a special instance of MSHedge-U with 𝐾 experts, with the first expert with
upper bound𝑈 ≫ 1, and the remaining 𝐾 − 1 experts with upper bound of one.

To construct the optimal tree, we place the first expert into one set as the left child of the root

node and put the other𝐾 −1 experts as the right child of the root without further partitioning it into

smaller nodes, since the contained experts have identical reward ranges. Then, a node algorithm

is implemented in the root node and a Hedge algorithm in its right child, respectively. The node

algorithm in the root node uses differentiated learning rates, with an aim to select a child node;

and the Hedge algorithm selects an expert from the right child.

With [1 (𝑜) = 1/
√
𝑇 and [2 (𝑜) = 1/

√
2𝑈𝑇 , the node regret of the root node 𝑜 is𝑂 (

√
𝑈𝑇 ). Further,

the node regret of 𝑜𝑟 is 𝑂 (
√︁
𝑇 log(𝐾 − 1)), as the direct result of the regret of Hedge. By Lemma 1,

the regret of DRate-U with a two-layer tree is the sum of the node regrets, and thus the regret of

DRate-U is𝑂 (
√
𝑈𝑇 +

√︁
𝑇 log(𝐾 − 1)). With sufficiently large𝑈 , the regret is dominated by the node

regret of the root, i.e., 𝑂 (
√
𝑈𝑇 ). For comparison, the regret of Hedge in this case is 𝑂 (𝑈

√︁
𝑇 log𝐾)

for this special case; hence, DRate-U outperforms Hedge. We also note that combining Theorem 2

and the lower bound result for the basic Hedge problem, yields a regret of any algorithm for the

above setting to be Ω(
√
𝑈𝑇 +

√︁
𝑇 log(𝐾 − 1)), which implies that the regret of DRate-U is order

optimal.

In the above example, there is only one expert whose upper bound is different from others and

we can achieve the best regret of DRate-U by a hierarchical learning structure with only two layers.

When there is greater heterogeneity in the reward upper bounds, more layers have to be added to

the tree. In the following, we show another example where the upper bounds of experts differ from

any other’s and DRate-U achieves the best result with many more layers.
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2

Fig. 3. Unbalanced tree constructed for Example 2.

Example 2. Consider a special case of MSHedge-U with 𝐾 experts with different reward upper
bounds in a descending order. With 𝑈 > 1 and 𝑎 < 1, the upper bounds are set as 𝑈1 = 𝑎0𝑈 ,𝑈2 =

𝑎1𝑈 , . . . ,𝑈𝐾−1 = 𝑎
𝐾−1𝑈 ,𝑈𝐾 = 𝑎𝐾𝑈 .

For the above special instance of MSHedge, we construct an unbalanced tree as shown in Figure 3.

In this tree, the right child all non-leaf nodes is always one expert. At the 𝑙-th layer, the upper

bound of the rewards of the experts associated with the node on the right hand side is 𝑎𝑙−1𝑈 . Given

this tree construction, by applying the results in Corollary 2, DRate-U guarantees the following
regret upper bound.

𝑅𝑇 = 𝑂

(
√
𝑈

𝐾+1∑︁
𝑙=1

√
𝑈𝑎

𝑙−1

2

√
𝑇

)
= 𝑂

(
𝑈 · 1 −

√
𝑎
𝐾+1

1 −
√
𝑎

√
𝑇

)
≤ 𝑂

(
𝑈

1 −
√
𝑎

√
𝑇

)
.

We first compare the above regret with that of the Hedge algorithm and the result in [11]. The

above regret holds for any 𝐾 > 1, and thus it implies that DRate-U attains a regret of 𝑂 (𝑈
√
𝑇 )

for an arbitrary number of experts. When 1 −
√
𝑎 is not too small, DRate-U enjoys substantial

improvement over the Hedge algorithm and the result in [11], whose regrets are 𝑂 (𝑈
√︁

log(𝐾)𝑇 )
in the worst case. For a two-expert problem with upper bounds being𝑈 and 𝑎𝑈 , the lower bound

of the regret for any algorithm is Ω(𝑎𝑈
√
𝑇 ) [11]. This also serves as a lower bound of the regret

for our example, since our example involves an extended expert set. Ignoring the constant factor 𝑎,

the above regret for DRate-U is order optimal.

4.3 Optimal tree construction
In the previous examples, we outlined two special cases of MSHedge-U and showed how the non-

uniform structure of expert upper bounds can lead to different underlying trees that minimize the

regret of DRate-U based on the main result in Theorem 1. In this section, we present an algorithm

to generate the optimal tree for any instance of MSHedge-U given the reward upper bounds.

Let 𝑅𝑇 (𝜙) be the regret of DRate-U with a tree 𝜙 . From Lemma 1, we have

𝑅𝑇 (𝜙) ≤ max

𝑣∈leafnodes

∑︁
𝑣′∈path(𝑣)

𝑅𝑇 (𝑣 ′) ≤ max

𝑣∈leafnodes

∑︁
𝑣′∈path(𝑣)\{𝑣 }

(√︃
2𝑈𝑣′

𝑙
𝑈𝑣′𝑟𝑇 +𝑈𝑣′𝑟

√
𝑇

)
+𝑈𝑣

√︁
𝑇 log |𝑣 |.

The above equation suggests that a good way to guarantee a small regret for DRate-U is to

balance the cumulative node regrets across the paths from the root node to leaf nodes. With this

intuition, we present a simple algorithm to construct the optimal tree.
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Algorithm 2 optimal_regret(𝑣)
1: 𝑟 = 𝑈𝑣

√︁
log |𝑣 |

2: if 𝑣 = ∅ then
3: return 0, ∅, ∅
4: end if

5: for any 𝑣′ ⊂ 𝑣 and 𝑣′ ≠ ∅ do

6: temp← max{optimal_regret
1
(𝑣′), optimal_regret

1
(𝑣\𝑣′) } +

√︁
2𝑈𝑣′𝑈𝑣\𝑣′ +min

{
𝑈𝑣′ ,𝑈𝑣\𝑣′

}
7: if temp < 𝑟 then

8: 𝑟 ← temp
9: 𝑣𝑙 ← 𝑣′

10: end if

11: end for

12: if 𝑟 = 𝑈𝑣

√︁
log |𝑣 | then ⊲ Compare with the case of no splitting

13: return𝑈𝑣

√︁
log |𝑣 |, 𝑣, ∅

14: end if

15: return 𝑟, 𝑣𝑙 , 𝑣\𝑣𝑙

Define the function optimal_regret(𝑣), implemented in a recursive manner. Given a node

𝑣 , optimal_regret(𝑣) returns the optimal regret for the tree with 𝑣 being the root. Specifically,

optimal_regret(𝑣) returns three output arguments in order: the smallest cumulative regret from

𝑣 to 𝑣∗ (optimal_regret(𝑜) corresponds to the regret of DRate-U), the optimal left child and the

optimal right child. When optimal_regret(𝑣) returns empty set, it implies DRate-U cannot gain

from adding additional levels by splitting 𝑣 and thus we will add 𝑣 to the tree as the leaf node. For

simplicity, we use optimal_regret_𝑖 (𝑣) (𝑖 = 1, 2, 3) to denote the 𝑖-th returned argument. The

recursive procedure of optimal_regret(𝑣) is formally defined in Algorithm 2. Since for each node

𝑣 , optimal_regret(𝑣) exhaustively compares the optimal regrets of all possible partitions on the

experts in 𝑣 (include no partition), it returns the optimal partition as children of node 𝑣 . Note that

the maximum cumulative regret on the path from node 𝑣 to a leaf node is equal to the the node

regret of 𝑣 plus the larger one of the maximum cumulative regret on the path from 𝑣𝑙 and 𝑣𝑟 . Hence,

by recursively calling function optimal_regret(𝑣), one gets the optimal children of each node,

and eventually the optimal tree.

5 MSHedgeWITH NON-UNIFORM UPPER AND LOWER BOUNDS
In this section, we study the MSHedge-LU, where both lower and upper bounds of the rewards are

in different scales, i.e, the reward range of the 𝑖-th expert is within [𝐿𝑖 ,𝑈𝑖 ]. We propose DRate-LU
as an extended version of DRate-U to deal with the new challenge in the model.

5.1 The DRate-LU algorithm
Similar to DRate-U, DRate-LU also uses a binary decision tree, which is constructed exactly in the

same way as that of DRate-U. Hence, we skip the details on how to construct the decision tree for

DRate-LU, and one can refer to §4.3 for more details.

Associated with each node, DRate-LU also assigns a randomized node algorithm to each non-leaf

node, and a Hedge algorithm to each leaf node with more than one expert. In non-leaf nodes,

DRate-LU uses the function as defined in Equation (4) to determine the selection probabilities,

but it redefines the per-time-slot expected feedback. Let 𝑣 be any node except the root node. The

expected feedback of node 𝑣 at time slot 𝑡 , 𝑥𝑡 (𝑣), is redefined as

𝑥𝑡 (𝑣) :=
∑︁
𝑖∈𝑣

𝑝𝑡 (𝑖)
𝑝𝑡 (𝑣)

(
𝑥𝑡 (𝑖) − 𝐿𝑣𝑝

)
=

∑︁
𝑖∈𝑣

𝑝𝑡 (𝑖)
𝑝𝑡 (𝑣)

𝑥𝑡 (𝑖) − 𝐿𝑣𝑝 ,
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where 𝐿𝑣 is the smallest reward lower bound of the experts in node 𝑣 , i.e., 𝐿𝑣 = min𝑖∈𝑣 𝐿𝑖 . By the

above definition, we can derive a range for 𝑥𝑡 (𝑣), which is

[
0,𝑈𝑣

]
, where 𝑈𝑣 := 𝑈𝑣 − 𝐿𝑣𝑝 . Note

that,𝑈𝑣 represents the gap between the largest and smallest rewards of the experts in node 𝑣 , and

thus reflects the fluctuation of the reward associated with the experts in node 𝑣 . Similarly, we

define 𝑋𝑡 (𝑣) :=
∑𝑡
𝜏=1

𝑥𝜏 (𝑣) as the cumulative reward of node 𝑣 up to time 𝑡 (set 𝑋0 (𝑣) = 0) and

𝐷𝑡 (𝑣) := 𝑋𝑡 (𝛼𝑡 (𝑣)) − 𝑋𝑡 (𝛽𝑡 (𝑣)) as the gap between the cumulative rewards of the children nodes

of 𝑣 up to time 𝑡 . With this redefinition of notation and similar to DRate-U, DRate-LU calculates
the selection probabilities for the children of node 𝑣 as follows.

𝑝𝑡 (𝛼𝑡 (𝑣)) = 1 −
(

1

2

− 𝐷𝑡 (𝑣)[𝑧 (𝑣)
)+
, 𝑝𝑡 (𝛽𝑡 (𝑣)) =

(
1

2

− 𝐷𝑡 (𝑣)[𝑧 (𝑣)
)+
, (7)

where [𝑧 (·), 𝑧 = {1, 2} are the differentiated learning rates in node 𝑣 for Case-1 and Case-2,

respectively, as defined in §3.1.

5.2 Regret results for DRate-LU
DRate-LU redefines the feedback for each node 𝑣 except the root node, whose range is [0,𝑈𝑣]. The
regret of DRate-LU can be analyzed by similar techniques as those for DRate-U. In order to analyze

the regret of DRate-LU, we first give the following propositions demonstrating the node regret

for DRate-LU, whose definition is the same as that in (5). Without loss of generality, we assume

𝑈𝑣𝑙 ≥ 𝑈𝑣𝑟 holds for each non-leaf node 𝑣 .

Proposition 3. (Node Regret of DRate-LU) Let 𝑣 be a non-leaf node of the tree constructed by
DRate-LU. With learning rates [1 (𝑣) and [2 (𝑣), DRate-LU guarantees the following per-node regret
for node 𝑣 .

𝑅𝑇 (𝑣) ≤
1

[1 (𝑣)
+𝑇𝑈 2

𝑣𝑟
[1 (𝑣) +

1

[2 (𝑣)
+ 2𝑇𝑈𝑣𝑙𝑈𝑣𝑟[2 (𝑣) +𝑈𝑣𝑙 +𝑈𝑣𝑟 .

Proposition 4. (Node Regret of Leaf Node) Let 𝑣 be the leaf node of the tree constructed by
DRate-LU and |𝑣 | > 1. With learning rate [ ′(𝑣) > 0, DRate-U guarantees the following node regret
for leaf node 𝑣 .

𝑅𝑇 (𝑣) ≤ [ ′(𝑣)𝑈 2

𝑣𝑇 +
log |𝑣 |
[ ′(𝑣) .

The above propositions can be proved by slightly modifying the proofs of Proposition 1 and 2,

respectively, and thus we skip the proofs. The result in Lemma 1 is applicable to DRate-LU. Hence,
combining the results in Lemma 1 and the above propositions yields the following theorem.

Theorem 4. (Regret of DRate-LU) The regret of DRate-LU satisfies the following upper bound.

𝑅𝑇≤
∑︁

𝑣∈path(𝑣∗)\{𝑣∗ }

(
1

[1 (𝑣)
+𝑇𝑈 2

𝑣𝑟
[1 (𝑣) +

1

[2 (𝑣)
+2𝑇𝑈𝑣𝑙𝑈𝑣𝑟[2 (𝑣) +𝑈𝑣𝑙 +𝑈𝑣𝑟

)
+𝑄2,

where 𝑄2 = [
′(𝑣∗)𝑈 2

𝑣∗𝑇 +
log |𝑣∗ |
[′ (𝑣∗) , if |𝑣

∗ | > 1; 0, otherwise.

The following corollary demonstrates the regret with the optimal learning rates.

Corollary 3. By setting learning rates [1 (𝑣) = 1/(𝑈𝑣𝑟
√
𝑇 ) and [2 (𝑣) = 1/

√︃
2𝑈𝑣𝑙𝑈𝑣𝑟𝑇 for non-

leaf nodes, and [ ′(𝑣 ′) =
√︁

log |𝑣 ′ |/𝑇 /𝑈𝑣′ for leaf nodes with more than one experts, DRate-LU achieves
the following regret upper bound.

𝑅𝑇 ≤
∑︁

𝑣∈path(𝑣∗)\{𝑣∗ }

(√︃
2𝑈𝑣𝑙𝑈𝑣𝑟𝑇 +𝑈𝑣𝑟

√
𝑇

)
+𝑈𝑣∗

√︁
𝑇 log |𝑣∗ |.
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We skip the proofs for DRate-LU, since once can prove the above results by slightly modifying

the proofs for DRate-U. With similar arguments as in Remark 1, we can show that with non-

uniform reward ranges, the regret of DRate-LU is much smaller than that of Hedge. The regret of

DRate-LU also depends how the tree is constructed. It is much more complicated to construct a

tree for DRate-LU than for DRate-U, since DRate-LU contains two sources of heterogeneity in the

reward ranges. Intuitively, placing the experts with similar reward ranges into the same subset can

reduce the values of 𝑈𝑣 , as well as the entire regret of DRate-LU. In order to show the efficiency of

DRate-LU, we construct a simple example as follows.

Example 3. Consider a special case of MSHedge-LU with two sets of experts: one expert with
reward range in [𝐿1,𝑈1]; and the second group of the remaining 𝐾 − 1 experts, whose reward range is
[𝐿2,𝑈2]. We assume [𝐿2,𝑈2] ⊂ [𝐿1,𝑈1].
To construct a tree of the problem instance in Example 3 for DRate-LU, we place the experts

with the same reward range in the same set and construct a two-layer tree as follows.

The Expert with reward range 

The Expert with reward range

Fig. 4. A two-layer tree structure for DRate-LU.

For the root note, DRate-LU executes the node algorithm with differentiated learning rate; for

the right child of the root node, the Hedge algorithm is used to select among the contained 𝐾 − 1

experts. With the above construction, the node regret of the root node is𝑂 (
√︁
(𝑈1 − 𝐿1) (𝑈2 − 𝐿1)𝑇 ),

and the node regret of the right child of the root node is 𝑂 ((𝑈2 − 𝐿2)
√︁
𝑇 log𝐾). By Lemma 1, the

total regret of DRate-LU for the above problem is 𝑂 (
√︁
(𝑈1 − 𝐿1) (𝑈2 − 𝐿1)𝑇 + (𝑈2 − 𝐿2)

√
𝑇 ).

5.3 MSHedge and the Lipschitz expert problem
In this section, we discuss the relationship between MSHedge-LU and another structured settings of

PEA, known as the Lipschitz expert problem [22, 27]. We call this problem LipHedge and define it

formally in the following.

Definition 2. (The LipHedge Problem) In LipHedge, non-uniform reward ranges of each expert
depends on neighbouring experts. Assumes there are 𝐾 experts. Specifically, the time-varying reward
range for the 𝑖-th expert in LipHedge can be denoted as [𝐿𝑖,𝑡 , 𝐿𝑖,𝑡 + 1], 𝑖 ∈ [𝐾]. In addition, the lower
bounds of any two adjacent experts satisfy the “Lipschitz Condition”, that is

|𝐿𝑖,𝑡 − 𝐿𝑖−1,𝑡 | ≤ 𝑐, 𝑐 > 0, for all 𝑖 = 2, 3, . . . , 𝐾, and 𝑡 = 1, 2, . . . ,𝑇 . (8)

Compared to MSHedge, LipHedge involves an additional condition on the rewards of adjacent

experts, that is similar to the Lipschitz continuous condition in the Lipschitz Expert problem [22, 27].

We can extend DRate-LU for the LipHedge problem. Toward this, we first partition the expert set

recursively and construct a tree with subsets being nodes and construct the same balanced tree as

Figure 2.

We can use the continuous condition for adjacent experts to bound the rewards of the experts

in a node. Consider a node 𝑣 , which lies in the 𝑙-th layer (take the layer containing the root
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node as the first layer). Then, there are 𝐾/2𝑙−1
adjacent experts associated with node 𝑣 , and the

reward gap between any two experts will be at most (𝐾/2𝑙−1 + 1)𝑐 . Thus, 𝑈𝑣 , satisfies 𝑈𝑣 ≤
(𝐾/2𝑙−2 + 1)𝑐 . Substituting it to Theorem 4 and Corollary 3 yields the regret result of DRate-LU for

LipHedge. By a balanced tree with leaf nodes containing only one expert, DRate-LU attains the

following regret. With setting the learning rates as Corollary 3, DRate-LU guarantees the regret of

𝑅𝑇 = 𝑂

(∑
log𝐾−1

𝑙=0
𝑐 𝐾

2
𝑙

√
𝑇

)
= 𝑂

(
𝑐𝐾
√
𝑇

)
for LipHedge. Note that the gap between the maximum and

minimum rewards of experts can be as large as𝐾𝑐 . Thus, Hedge can attain a regret of𝑂 (𝑐𝐾
√︁
𝑇 log𝐾).

The above theorem shows that DRate-LU is much more efficient to address LipHedge than Hedge.

Also, compared to standard techniques used in Lipschitz Expert problems [24, 27, 37], our method

attains the same or better performance, but our model can be applied to more general models of

structured PEA.

6 EXPERIMENTAL RESULTS
In this section, we evaluate the performance of our proposed algorithms for MSHedge through

numerical experiments and compare them to the basic and extended versions the Hedge algorithm

and prior algorithms for multi-scale experts [11].

6.1 Overview of setup and baseline algorithms
We consider a scenario with 𝐾 = 8 experts with Bernoulli rewards. We scale the Bernoulli processes

by different factors, and take them as rewards for the experts. The lower bound of the reward range

is zero, and the upper bound is different based on the scaling factor. This captures the first model

of MSHedge. In all experiments, we report the cumulative regret after 3,000 rounds. All reported

values are averaged over 10 independent trials and standard deviations are plotted as shaded areas.

Comparison algorithms. We compare DRate with three prior algorithms: (1) the Hedge algorithm

with learning rate [ =
√︁

log(𝐾)/𝑇 /(max𝑖∈[𝐾 ] 2𝑈𝑖 ); (2) AdvHedge, which is an extended variant of

Hedge [14] that adjusts the learning rate based on empirical effective reward ranges of experts, which

can be non-uniform over time. We set the learning rate of AdvHedge to [ =
√︁

log(𝐾)/𝑇 /(2 ∗ EmpRR),
where EmpRR stands for the empirical effective reward ranges of experts. The third baseline is the

Multi-Scale Multiplicative-Weight (MSMW) algorithm in [11]. MSMW first normalizes the reward of

each expert for updating weights and then projects the weights to a simplex by a smooth multi-scale

projection for making the sampling probability distribution over the experts. In our experiment, we

set the learning rate of MSMW to [ =
√︁

log(𝐾𝑇 )/𝑇 /3. We note that all learning rates for the baseline

algorithms are chosen according to the suggested values in the original work to optimize the regret.

Last, since the reward lower bound is set to zero in our experiments, in our experiments we only

implement DRate-U with [1 (𝑣) = 1/(𝑈𝑣𝑙
√
𝑇 ) and [2 (𝑣) = 1/(

√︁
2𝑈𝑣𝑙𝑈𝑣𝑟𝑇 ), where 𝑈𝑣𝑙 ≥ 𝑈𝑣𝑟 . We

expect similar results for the case of multi-scale lower bounds.

6.2 Experimental results
In the following, we evaluate the performance of DRate in two different scenarios.

Non-uniform reward ranges with uniformly selected reward means. In the first experiment, eight

experts are categorized into two groups of four experts each. The experts in the same group have a

common reward range of [0, 1], while that for the second group is [0,𝑈 ],𝑈 > 1. Mean rewards of

all experts are randomly selected from [0, 1]. The results in Figures 5(a) and 5(b) demonstrate the

regrets of the investigated algorithms with different reward ranges for the experts in the second

group, i.e., [0, 2], [0, 3], [0, 4], [0, 5], [0, 6]. Specifically, Figure 5(a) corresponds to the case where

the optimal expert lies in the first group, and Figure 5(b) corresponds to the case where the optimal
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(a) Best expert lies in the first group (b) Best expert lies in the second group

(c) Fixed non-uniform reward ranges and means (d) Random reward ranges and means

Fig. 5. Performance comparison with non-uniform reward ranges and means.

expert lies in the second group. Figure 5(a) shows that DRate, MSMW and AdvHedge significantly

outperform the Hedge algorithm. This observation matches our expectation that the performance

of Hedge degrades quickly with large reward upper bounds. In contrast to Hedge, DRate efficiently

deals with non-uniform reward ranges, with regret slightly increasing as heterogeneity in reward

ranges increases. In Figure 5(b), DRate and AdvHedge outperform others, and the performance of

MSMW is largely degraded. The performance degradation of MSMW matches its theoretical results that

the performance of MSMW linearly degrades as a function of the upper bound of the best expert.

Compared to the first set of results in Figure 5(a), one observes that the performance of AdvHedge
remains unchanged and works as well as DRate. That is because, AdvHedge tunes its learning rate

based on empirical reward gaps, and thus mitigates the impact of large reward upper bounds when

empirical rewards of all experts are much smaller than the upper bound. However, as we show in

the next experiment, AdvHedge fails to be competitive in some other experimental scenarios, where

mean rewards of experts also becomes non-uniform.

Non-uniform reward ranges with non-uniform mean rewards. In the second experiment, we

assign non-uniform reward ranges to experts, and then randomly select mean rewards from the

corresponding reward ranges. Results are shown in Figures 5(c) and 5(d). In the first experiment,

experts are evenly divided into two groups. The reward ranges of experts in the first group are

all set to [0, 1], and those for the second group are set to [0,𝑈 ],𝑈 > 1. Figure 5(c) demonstrates

the regrets of different algorithms for𝑈 = 2, 3, 4, 5, 6. In the second experiment in Figure 5(d), no
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fixed upper bounds are assigned to experts. Instead, the upper bound of every expert is randomly

selected from a given range. The larger the range, the greater the heterogeneity in reward ranges.

Figure 5(d) gives the regret results when reward upper bounds of experts are randomly selected

from the ranges [0, 4], [0, 8], [0, 12], [0, 16], [0, 20].
Both Figures 5(c) and 5(d) verify the advantages of DRate over the three baseline algorithms.

Notable observations are summarized as follows. (1) When the heterogeneity of reward ranges

increases, the regrets of all algorithms increase, yet, the regret of DRate is much smaller and

increases at a slower rate than the others. (2) AdvHedge and MSMW perform slightly better than

Hedge, but their regrets increase quickly with non-uniform reward ranges when mean rewards are

randomly selected from the corresponding reward ranges. Specifically, for the AdvHedge algorithm,

when mean rewards are randomly selected, it cannot benefit from mitigating the influence of small

empirical rewards as in the first set of experiments where mean rewards for all experts lie in a very

small range. The performance of MSMW algorithm also degrades quickly, since the best expert is

likely to have a larger upper bound, resulting in a worse regret.

7 RELATEDWORK
7.1 PEA with generalized reward ranges

Non-uniform reward ranges. In §2.4, we have reviewed this kind of work and compared the results

in those works with ours. Thus, we skip the details here.

Structured rewards. In some works, the reward ranges are characterized by defining dependence

or correlation among the rewards of the experts, which introduces heterogeneity to reward ranges

implicitly. For example, the works in [22, 23] assume a structured class of payoff functions over

experts (or decision points called in their work), whose structure is induced by a metric on the

decision space, where correlation or dependence is defined among decision points. That is, there

are no fixed reward ranges for decision points, but the reward of each decision point has to satisfy

some dependence or correlation conditions among the decision points. By leveraging the structure

as prior knowledge of algorithms, one is able to design efficient learning algorithms [31, 33]. For

example, the authors in [24, 27, 37] consider Lipschitz experts in a Euclidean space of constant

dimension, with proven regret upper bound. The above model can be generalized by considering

discontinuity points in the continuous condition, and one can refer to [8, 32]. For the structured

settings of PEA, we have shown the efficiency of our frameworks by theoretical results in §5.3.

Last, for bandit version of this kind of work, where only partial information on the decision points

can be acquired at each time slot, one can refer to [1, 2, 7, 20, 21] etc.

Time-varying reward ranges. Some other work considers time-varying reward upper bounds.

For example, the works in [3, 19, 36] considered the model where the reward upper bounds can be

time-varying and even unbounded. For example, the work in [36] considered rewards to satisfy

time-varying upper bounds over time, and proposed an algorithm which is optimal as the scaled

fluctuations of one-step losses of experts of the pool tend to zero. In addition to [36], Poland and

Hutter in [19] have studied the games where one-step losses of all experts at each step 𝑡 are bounded

from above, and the upper bounds consist of an increasing sequence 𝑈𝑡 , 𝑡 = 1, 2, . . . ,𝑇 , which

are given in advance. They presented a learning algorithm that is asymptotically consistent for

𝑈𝑡 = 𝑡
1/16

. However, all of the above works did not consider internal heterogeneity among experts

in a single time slot.
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7.2 PEA with specific reward realizations
Another direction of work focuses on devising learning algorithms whose performance depends on

the realization of rewards. Those works assume uniform reward ranges, but the resulting regret

upper bounds can vary with different realizations. Even though the setting of their model differs

from ours, we are still interested in comparing their works with ours from the angle of algorithm

design and theoretical results.

In [28], the authors investigated learning algorithms, that can achieve the best performance

of both worlds, that is, attaining optimal regret both for adversarial rewards and for stochastic

rewards. Similarly, the authors in [5] considered a setting where the environment is benign and

generates losses stochastically, but the feedback observed by the learner is subject to moderate

adversarial corruption. They proved that a variant of the classical Multiplicative Weights algorithm

with decreasing step sizes achieves constant regret in this setting and performs optimally in a wide

range of environments, regardless of the magnitude of the injected corruption. Specifically, regret

can be expressed as a function of the amount of corruption. Also, one finds similar results in the

bandit setting [12, 29, 30].

In addition, there are many works on designing parameter-free algorithms, whose regret is

independent of the number of experts to some degree. To do this, we can order the cumulative

payoffs of all actions from highest to lowest and define the regret of the learner to the top 𝜖-quantile,
𝜖 ∈ [0, 1] to be the difference between the cumulative reward of the ⌈𝑁𝜖⌉-th element in the sorted

list and that of the learner. In [15], the authors proposed a novel algorithm, NormalHedge, that

achieves a regret of 𝑂 (
√︃
𝑇 ln

1

𝜖
+ ln

2 𝐾) with respect to the above new definition, which means the

algorithm suffers at most this amount of regret for all but an 𝜖 fraction of the experts. Note that this

bound does not depend on 𝐾 at all and is at most 𝑂 (
√
𝑇 ln𝐾 + ln

2 𝐾), since 𝜖 ≥ 1/𝐾 . This is close
to the result for the Hedge algorithm differing by a small additive term ln

2 𝐾 . Then, [26] obtains a

regret of 𝑂 (
√︁
𝑇 ln(ln𝑇 )/𝜖)) for a new algorithm, NormalHedge.DT, which drops the dependence

on 𝐾 . Note that, in the cases where there are many “good” experts whose rewards are close to each

other, the above result is substantially better than that by the Hedge algorithm.

Last, there is another kind of work which attains better regret performance with small expectation

and variance of realized rewards. For example, the authors in [14] reported a regret of𝑂 (
√︃∑𝑇

𝑡=1
𝐺2

𝑡 ),
where𝐺𝑡 is the effective range of the rewards at round 𝑡 , i.e.,𝐺𝑡 = max𝑖∈[𝐾 ] 𝑥𝑡 (𝑖) −min𝑖′∈[𝐾 ] 𝑥𝑡 (𝑖 ′).
Apparently, when the realization of payoffs is much smaller than the upper bound, the algorithm

significantly outperforms the Hedge algorithm.

Generally, all the aboveworks focus on the performance of the algorithmwith specific realizations

of inputs, and the resulting regrets can be based on the heterogeneous payoff realizations over

different experts. However, those work can not improve on the performance of the algorithm under

the worst case. Moreover, those works only leverage the effective reward range of all experts, but

none of them take into account the non-uniform reward ranges across experts in a single time slot.

8 CONCLUDING REMARKS
Motivated by the problems of dynamic pricing and portfolio selection, in this paper, we studied an

extended version of the classic Hedge problem where there are multiple experts with non-uniform

reward ranges, and the goal of an online learner is to find the best expert. We developed hierarchical

learning algorithms that explicitly consider the heterogeneity of the reward range of experts

into their sequential decision-making. Our theoretical regret analysis shows that the proposed

algorithms outperform the existing algorithms when the heterogeneity of the expert rewards is

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 34. Publication date: June 2022.



Hierarchical Learning Algorithms for Multi-scale Expert Problems 34:21

high. We also verified our theoretical observations by numerical experiments and showed the our

algorithms outperforms multiple existing algorithms in the literature.

A limitation of this work is that in the current result, the tight lower bound and optimal result for

our setting in the general case is still missing. We leave developing an algorithm with the optimal

regret for MSHedge as an open problem. Developing a unified algorithm that performs well under

both uniform and non-uniform reward structures is another promising future direction. Another

interesting future work is to extend MSHedge to the bandit setting where the algorithm can only

observe the reward of the selected expert (or arm in the bandit context). Specifically, an interesting

problem for the bandit setting with multi-scaled reward ranges is whether we can achieve a better

regret by using the hierarchical learning policy.
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A SUPPLEMENTARY PROOFS
In this section, we give the proofs of the upper and lower bounds. Note that, given the upper

bounds, the learning rate selected by node 𝑣 is actually based on the index of the leading child,

which is 𝛼𝑡 (𝑣). Hence, we can use [ (𝛼𝑡 (𝑣)) to denote the learning rate adopted by node 𝑣 at time

slot 𝑡 . For example, if𝑈𝑣𝑙 ≥ 𝑈𝑣𝑟 , we have

[ (𝛼𝑡 (𝑣)) =
{
[1 (𝑣), 𝛼𝑡 (𝑣) = 𝑣𝑙 ;
[2 (𝑣), 𝛼𝑡 (𝑣) = 𝑣𝑟 .
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A.1 A proof of Lemma 1
Lemma 1 can be proved by recursively applying the definition of feedback of nodes. Specifically,

we have

𝑅𝑇 =max

𝑖∈K

𝑇∑︁
𝑡=1

𝑥𝑡 (𝑖) − E
[
𝑇∑︁
𝑡=1

𝑥𝑡 (𝐼𝑡 )
]
= max

𝑖∈K

𝑇∑︁
𝑡=1

𝑥𝑡 (𝑖) −
𝑇∑︁
𝑡=1

∑︁
𝑖∈K

𝑝𝑡 (𝑖)𝑥𝑡 (𝑖)

=

𝑇∑︁
𝑡=1

𝑥𝑡 (𝑣∗) −
𝑇∑︁
𝑡=1

𝑥𝑡 (𝑜) =
𝑇∑︁
𝑡=1

𝑥𝑡 (𝑣∗) −
𝑇∑︁
𝑡=1

𝑥𝑡 ((𝑣∗)𝑝 ) +
𝑇∑︁
𝑡=1

𝑥𝑡 ((𝑣∗)𝑝 ) −
𝑇∑︁
𝑡=1

𝑥𝑡 (𝑜)

≤𝑅𝑇 ((𝑣∗)𝑝 ) +
𝑇∑︁
𝑡=1

𝑥𝑡 ((𝑣∗)𝑝 ) −
𝑇∑︁
𝑡=1

𝑥𝑡 (𝑜)

≤𝑅𝑇 (𝑣∗)𝑝 ) +
𝑇∑︁
𝑡=1

𝑥𝑡 ((𝑣∗)𝑝 ) −
𝑇∑︁
𝑡=1

𝑥𝑡 ((𝑣∗)2𝑝 ) +
𝑇∑︁
𝑡=1

𝑥𝑡 ((𝑣∗)2𝑝 ) −
𝑇∑︁
𝑡=1

𝑥𝑡 (𝑜)

=𝑅𝑇 ((𝑣∗)𝑝 ) + 𝑅𝑇 ((𝑣∗)2𝑝 ) +
𝑇∑︁
𝑡=1

𝑥𝑡 ((𝑣∗)2𝑝 ) −
𝑇∑︁
𝑡=1

𝑥𝑡 (𝑜).

By recursively applying the definition of 𝑥𝑡 (·), the above equation can be rewritten as

𝑅𝑇 ≤
∑︁

𝑣∈path(𝑣∗)
𝑅𝑇 (𝑣).

This completes the proof.

A.2 Analysis of the Node Regret of DRate-U (Proof of Proposition 1)
In this subsection, we provide a detailed proof of Proposition 1, which characterizes the node regret

of any non-leaf node 𝑣 when executing DRate-U. Generally, the proof consists of the following
three parts.

Part I: Define Per-step Regret.

To ease our analysis, we first define the “per-step regret” for node 𝑣 , which is

𝑟𝑡 (𝑣) := 𝑋𝑡 (𝛼𝑣,𝑡 ) − 𝑋𝑡−1 (𝛼𝑡−1 (𝑣)) − (𝑝𝑡 (𝛼𝑡 (𝑣))𝑥𝑡 (𝛼𝑡 (𝑣)) + 𝑝𝑡 (𝛽𝑡 (𝑣))𝑥𝑡 (𝛽𝑡 (𝑣))) .
Intuitively, the per-step regret, 𝑟𝑡 (𝑣), which can be negative, characterizes the changing amount of

the node regret at any time slot 𝑡 . It follows from the definition of 𝑟𝑡 (𝑣) that

𝑅𝑇 (𝑣) = max

{
𝑇∑︁
𝑡=1

𝑥𝑡 (𝑣𝑙 ),
𝑇∑︁
𝑡=1

𝑥𝑡 (𝑣𝑟 )
}
−

𝑇∑︁
𝑡=1

(𝑝𝑡 (𝑣𝑙 )𝑥𝑡 (𝑣𝑙 ) + 𝑝𝑡 (𝑣𝑙 )𝑥𝑡 (𝑣𝑟 ))

= 𝑋𝑇 (𝛼𝑇 (𝑣)) −
𝑇∑︁
𝑡=1

(𝑝𝑡 (𝑣𝑙 )𝑥𝑡 (𝑣𝑙 ) + 𝑝𝑡 (𝑣𝑙 )𝑥𝑡 (𝑣𝑟 ))

=

𝑇∑︁
𝑡=1

(
𝑋𝑡 (𝛼𝑡 (𝑣))−𝑋𝑡−1 (𝛼𝑡−1 (𝑣))

)
+𝑋0 (𝛼0 (𝑣))−

𝑇∑︁
𝑡=1

(𝑝𝑡 (𝛼𝑡 (𝑣))𝑥𝑡 (𝛼𝑡 (𝑣))+𝑝𝑡 (𝛽𝑡 (𝑣))𝑥𝑡 (𝛽𝑡 (𝑣)))=
𝑇∑︁
𝑡=1

𝑟𝑡 (𝑣).

The above equation implies that the node regret of 𝑣 can be rewritten as the summation of its

per-step regrets over all time slots.

Part II: Define stack 𝑆 .
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To analyze the per-step regret, we define stack 𝑆 which only exists in our analysis. Our later

analysis will show that the above defined per-step regret can be characterized through the elements

in 𝑆 . Specifically, 𝑆 is empty at the beginning, and its elements are updated at each time slot based

on the feedback gap between the two children of node 𝑣 . Specifically, we denote the feedback gap at

time slot 𝑡 as 𝑔𝑡 , i.e., 𝑔𝑡 := 𝑥𝑡 (𝛼𝑡 (𝑣)) − 𝑥𝑡 (𝛽𝑡 (𝑣)). With 𝑔𝑡 , the elements in 𝑆 are updated according

to the following three rules.

(1) When 𝑔𝑡 = 0: do nothing to the stack.

(2) When 𝑔𝑡 > 0: push 𝑔𝑡 to the top of the stack.

(3) When 𝑔𝑡 < 0: if |𝑔𝑡 | is larger than the sum of all the elements in 𝑆 , denoted as sum(𝑆), empty

the stack and add a new element with value being the |𝑔𝑡 | − sum(𝑆) as a new top; otherwise, pop

items until the sum of the values of popped items is larger than or equal to |𝑔𝑡 |. If their sum is larger

than |𝑔𝑡 |, a new item with value being the sum minus |𝑔𝑡 | will be pushed into the stack as a new

top. We use the following figure to demonstrate the updates of the stack with different values of 𝑔𝑡 .

New Stack New Stack

Fig. 6. Stack evolution according to different values of |𝑔𝑡 |.

Considering that the elements of 𝑆 can be time-varying, we use 𝑆𝑡 to denote the state of the stack

at the end of time slot 𝑡 and 𝑠𝑡,𝑘 to denote the value of the 𝑘-th element from the bottom at time slot 𝑡 .

Part III: Analyze Per-step Regret.

In this part, we proceed to analyze the per-step regret case by case.

Case 1: 𝛼𝑡 (𝑣) = 𝛼𝑡−1 (𝑣). In this case, the index of the leading child is the same as the previous

time slot. By the definition of the per-step regret, there is

𝑟𝑡 (𝑣) = 𝑋𝑡 (𝛼𝑡 (𝑣)) − 𝑋𝑡−1 (𝛼𝑡−1 (𝑣)) − (𝑝𝑡 (𝛼𝑡 (𝑣))𝑥𝑡 (𝛼𝑡 (𝑣)) + 𝑝𝑡 (𝛽𝑡 (𝑣))𝑥𝑡 (𝛽𝑡 (𝑣)))
= 𝑥𝑡 (𝛼𝑡 (𝑣)) − (𝑝𝑡 (𝛼𝑡 (𝑣))𝑥𝑡 (𝛼𝑡 (𝑣)) + 𝑝𝑡 (𝛽𝑡 (𝑣))𝑥𝑡 (𝛽𝑡 (𝑣)))
= (1 − 𝑝𝑡 (𝛼𝑡 (𝑣))) 𝑥𝑡 (𝛼𝑡 (𝑣)) − 𝑝𝑡 (𝛽𝑡 (𝑣))𝑥𝑡 (𝛽𝑡 (𝑣))
= 𝑝𝑡 (𝛽𝑡 (𝑣)) (𝑥𝑡 (𝛼𝑡 (𝑣)) − 𝑥𝑡 (𝛽𝑡 (𝑣)))

=

(
1

2

− 𝐷𝑡−1 (𝑣)[ (𝛼𝑡−1 (𝑣))
)+
(𝑥𝑡 (𝛼𝑡 (𝑣)) − 𝑥𝑡 (𝛽𝑡 (𝑣)))

=

(
1

2

− 𝐷𝑡−1 (𝑣)[ (𝛼𝑡 (𝑣))
)+
(𝑥𝑡 (𝛼𝑡 (𝑣)) − 𝑥𝑡 (𝛽𝑡 (𝑣))) ,

(9)

Note that, the sum of the values of all elements in the stack is always equal to the gap of

cumulative feedback between the leading child and the other one, i.e., sum(𝑆𝑡 ) = 𝐷𝑡 (𝑣), for any 𝑡 .
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Hence,

𝑟𝑡 (𝑣) =
(

1

2

− 𝐷𝑡−1 (𝑣)[ (𝛼𝑡 (𝑣))
)+
(𝑥𝑡 (𝛼𝑡 (𝑣)) − 𝑥𝑡 (𝛽𝑡 (𝑣)))

=

(
1

2

− sum(𝑆𝑡−1)[ (𝛼𝑡 (𝑣))
)+
(𝑥𝑡 (𝛼𝑡 (𝑣)) − 𝑥𝑡 (𝛽𝑡 (𝑣)))

=

(
1

2

−
len(𝑆𝑡−1)∑︁
𝑘=1

𝑠𝑡,𝑘[ (𝛼𝑡 (𝑣))
)+
𝑔𝑡 ,

(10)

where len(·) returns the length of the stack.

We continue to consider the following two cases.

Case 1(a): When 𝑔𝑡 ≥ 0, we have

𝑟𝑡 (𝑣) =
(

1

2

−
len(𝑆𝑡−1)∑︁
𝑘=1

𝑠𝑡,𝑘[ (𝛼𝑡 (𝑣))
)+
𝑔𝑡 = Φ(𝑆𝑡 ) − Φ(𝑆𝑡−1),

where Φ(𝑆𝑡 ) is a potential function with respect to the elements in stack 𝑆 at time slot 𝑡 , and defined

as

Φ(𝑆𝑡 ) :=

len(𝑆𝑡 )∑︁
𝑘=1

(
1

2

−
𝑘∑︁
𝑘′=1

𝑠𝑡,𝑘′[ (𝛼𝑡 (𝑣))
)+
𝑠𝑡,𝑘 .

Case 1(b): When 𝑔𝑡 < 0, we have

𝑟𝑡 (𝑣) =
(

1

2

−
len(𝑆𝑡−1)∑︁
𝑘=1

𝑠𝑡−1,𝑘[ (𝛼𝑡 (𝑣))
)+
𝑔𝑡

=

(
1

2

−
len(𝑆𝑡 )∑︁
𝑘=1

𝑠𝑡,𝑘[ (𝛼𝑡 (𝑣))
)+
𝑔𝑡 + ©«

(
1

2

−
len(𝑆𝑡−1)∑︁
𝑘=1

𝑠𝑡−1,𝑘[ (𝛼𝑡 (𝑣))
)+
−

(
1

2

−
len(𝑆𝑡 )∑︁
𝑘=1

𝑠𝑡,𝑘[ (𝛼𝑡 (𝑣))
)+ª®¬𝑔𝑡 .

(11)

By applying the analysis in A.3, we have

𝑟𝑡 (𝑣) ≤
(

1

2

−
len(𝑆𝑡 )∑︁
𝑘=1

𝑠𝑡,𝑘[ (𝛼𝑡 (𝑣))
)+
𝑔𝑡 + [ (𝛼𝑡 (𝑣))𝑔2

𝑡 . (12)

If 𝛼𝑡 (𝑣) = 𝑣𝑙 , we have 𝑔𝑡 = 𝑥𝑡 (𝑣𝑙 ) − 𝑥𝑡 (𝑣𝑟 ) < 0, and thus |𝑔𝑡 | ≤ |𝑥𝑡 (𝑣𝑟 ) | ≤ 𝑈𝑣𝑟 . The second term

in Equation (12) satisfies

[ (𝛼𝑡 (𝑣))𝑔2

𝑡 ≤ [ (𝑣𝑙 )𝑈 2

𝑣𝑟
. (13)

If 𝛼𝑡 (𝑣) = 𝑣𝑟 , we have
|𝑔𝑡 | ≤ 𝑈𝑣𝑙 ,

|𝑔𝑡 | =
len(𝑆𝑡−1)∑︁
𝑘=1

𝑠𝑡−1,𝑘 −
len(𝑆𝑡 )∑︁
𝑘=1

𝑠𝑡,𝑘 ≤ (𝑛𝑡 + 1)𝑈𝑣𝑟 .

In the above equation, 𝑛𝑡 is the number of elements popped from the stack at time slot 𝑡 . The last

inequality of the second equation uses the fact that 𝑠𝑡,𝑘 ≤ 𝑈𝛼𝑡 (𝑣) . Then, we have

[ (𝛼𝑡 (𝑣))𝑔2

𝑡 ≤ [ (𝑣𝑟 ) (𝑛𝑡 + 1)𝑈𝑣𝑟𝑈𝑣𝑙 . (14)
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Combining Equation (12), (13) and (14) yields

𝑟𝑡 (𝑣) ≤
(

1

2

−
len(𝑆𝑡 )∑︁
𝑘=1

𝑠𝑡,𝑘[ (𝛼𝑡 (𝑣))
)+
𝑔𝑡 + (𝑛𝑡 + 1)𝑈𝑣𝑙𝑈𝑣𝑟[ (𝑣𝑟 ) +𝑈 2

𝑣𝑟
[ (𝑣𝑙 )

≤Φ(𝑆𝑡 ) − Φ(𝑆𝑡−1) + (𝑛𝑡 + 1)𝑈𝑣𝑙𝑈𝑣𝑟[ (𝑣𝑟 ) +𝑈 2

𝑣𝑟
[ (𝑣𝑙 ),

where the second inequality is based on the definition of the the potential function Φ(𝑆𝑡 ).
Concluding cases (1.1) and (1.2), we have

𝑟𝑡 (𝑣) ≤ Φ(𝑆𝑡 ) − Φ(𝑆𝑡−1) + (𝑛𝑡 + 1)𝑈𝑣𝑙𝑈𝑣𝑟[ (𝑣𝑟 ) +𝑈 2

𝑣𝑟
[ (𝑣𝑙 ).

Case 2: 𝛼𝑡 (𝑣) ≠ 𝛼𝑡−1 (𝑣).
In this case, we also upper bound the per-step regret by using the potential function with respect

to the defined stack. Based on the definitions, we rewrite the per-step regret as follows.

𝑟𝑡 (𝑣) = 𝑋𝑡 (𝛼𝑡 (𝑣)) − 𝑋𝑡−1 (𝛼𝑡−1 (𝑣)) − (𝑝𝑡 (𝛼𝑡 (𝑣))𝑥𝑡 (𝛼𝑡 (𝑣)) + 𝑝𝑡 (𝛽𝑡 (𝑣))𝑥𝑡 (𝛽𝑡 (𝑣)))
= 𝑋𝑡 (𝛼𝑡 (𝑣)) − 𝑋𝑡−1 (𝛼𝑡−1 (𝑣))

−
(
𝑝𝑡 (𝛼𝑡 (𝑣))𝑋𝑡 (𝛼𝑡 (𝑣)) − 𝑝𝑡 (𝛼𝑡 (𝑣))𝑋𝑡−1 (𝛼𝑡 (𝑣)) + 𝑝𝑡 (𝛽𝑡 (𝑣))𝑋𝑡 (𝛽𝑡 (𝑣)) − 𝑝𝑡 (𝛽𝑡 (𝑣))𝑋𝑡−1 (𝛽𝑡 (𝑣))

)
= 𝑋𝑡 (𝛼𝑡 (𝑣)) − 𝑋𝑡−1 (𝛼𝑡−1 (𝑣))

−
(
𝑝𝑡 (𝛼𝑡 (𝑣))𝑋𝑡 (𝛼𝑡 (𝑣)) − 𝑝𝑡 (𝛼𝑡 (𝑣))𝑋𝑡−1 (𝛽𝑡−1 (𝑣)) + 𝑝𝑡 (𝛽𝑡 (𝑣))𝑋𝑡 (𝛽𝑡 (𝑣)) − 𝑝𝑡 (𝛽𝑡 (𝑣))𝑋𝑡−1 (𝛼𝑡−1 (𝑣))

)
= (1−𝑝𝑡 (𝛼𝑡 (𝑣)))𝑋𝑡 (𝛼𝑡 (𝑣))−(1−𝑝𝑡 (𝛽𝑡(𝑣)))𝑋𝑡−1 (𝛼𝑡−1(𝑣))+𝑝𝑡 (𝛼𝑡 (𝑣))𝑋𝑡−1 (𝛽𝑡−1(𝑣))−𝑝𝑡 (𝛽𝑡 (𝑣))𝑋𝑡 (𝛽𝑡 (𝑣))

= 𝑝𝑡 (𝛽𝑡 (𝑣))
(
𝑋𝑡 (𝛼𝑡 (𝑣)) − 𝑋𝑡 (𝛽𝑡 (𝑣))

)
− 𝑝𝑡 (𝛼𝑡 (𝑣))

(
𝑋𝑡−1 (𝛼𝑡−1 (𝑣)) − 𝑋𝑡−1 (𝛽𝑡−1 (𝑣))

)
= 𝑝𝑡 (𝛽𝑡 (𝑣))𝐷𝑡 (𝑣) − 𝑝𝑡 (𝛼𝑡 (𝑣))𝐷𝑡−1 (𝑣).

It follows from the definition of the potential function that

𝑝𝑡 (𝛽𝑡 (𝑣))𝐷𝑡 (𝑣) ≤ Φ(𝑆𝑡 ),

and

−𝑝𝑡 (𝛼𝑡 (𝑣))𝐷𝑡−1 (𝑣) ≤ −
1

2

𝐷𝑡−1 (𝑣) ≤ −Φ(𝑆𝑡−1).

Combining the above three equations yields

𝑟𝑡 (𝑣) ≤ Φ(𝑆𝑡 ) − Φ(𝑆𝑡−1).

Concluding cases (1) and (2), we have

𝑟𝑡 (𝑣) ≤ Φ(𝑆𝑡 ) − Φ(𝑆𝑡−1) + (𝑛𝑡 + 1)𝑈𝑣𝑙𝑈𝑣𝑟[ (𝑣𝑟 ) +𝑈 2

𝑣𝑟
[ (𝑣𝑙 ), for any 𝑡 ∈ [𝑇 ] .

Summing 𝑟𝑡 (𝑣) up yields the node regret of node 𝑣 :

𝑅𝑇 (𝑣) =
𝑇∑︁
𝑡=1

𝑟𝑡 ≤ Φ(𝑆𝑇 ) − Φ(𝑆0) +
𝑇∑︁
𝑡=1

(
(𝑛𝑡 + 1)𝑈𝑣𝑙𝑈𝑣𝑟[ (𝑣𝑟 ) +𝑈 2

𝑣𝑟
[ (𝑣𝑙 )

)
≤ 1

[ (𝑣𝑙 )
+𝑇𝑈 2

𝑣𝑟
[ (𝑣𝑙 ) +

1

[ (𝑣𝑟 )
+ 2𝑇𝑈𝑣𝑙𝑈𝑣𝑟[ (𝑣𝑟 ),

where the inequality uses the facts that Φ(𝑆0) = 0, Φ(𝑆𝑇 ) ≤ max{[−1 (𝑣𝑙 ), [−1 (𝑣𝑟 )}, and
∑𝑇
𝑡=1
(𝑛𝑡 +

1) ≤ 2𝑇 . Substituting [1 (𝑣) and [2 (𝑣) into [ (𝑣𝑙 ) and [ (𝑣𝑟 ) yields the final result. This completes

the proof.
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A.3 A proof of Equation (12)
We prove the equation case by case.

Case 1:
1

2
−∑len(𝑆𝑡−1)

𝑘=1
𝑠𝑡−1,𝑘[ (𝛼𝑡 (𝑣)) ≤ 0.

It is straightforward that

𝑟𝑡 (𝑣) = 0 ≤
(

1

2

−
len(𝑆𝑡 )∑︁
𝑘=1

𝑠𝑡,𝑘[ (𝛼𝑡 (𝑣))
)+
𝑔𝑡 . (15)

Case 2:
1

2
−∑len(𝑆𝑡−1)

𝑘=1
𝑠𝑡−1,𝑘[ (𝛼𝑡 (𝑣)) > 0.

In this case, we have
1

2
− ∑len(𝑆𝑡 )

𝑘=1
𝑠𝑡,𝑘[ (𝛼𝑡 (𝑣)) > 0, since

∑len(𝑆𝑡−1)
𝑘=1

𝑠𝑡−1,𝑘 ≥
∑len(𝑆𝑡 )
𝑘=1

𝑠𝑡,𝑘 when

𝑔𝑡 < 0. It follows that(
1

2

−
len(𝑆𝑡−1)∑︁
𝑘=1

𝑠𝑡−1,𝑘[ (𝛼𝑡 (𝑣))
)+
−

(
1

2

−
len(𝑆𝑡 )∑︁
𝑘=1

𝑠𝑡,𝑘[ (𝛼𝑡 (𝑣))
)+

=
1

2

−
len(𝑆𝑡−1)∑︁
𝑘=1

𝑠𝑡−1,𝑘[ (𝛼𝑡 (𝑣)) −
1

2

+
len(𝑆𝑡 )∑︁
𝑘=1

𝑠𝑡,𝑘[ (𝛼𝑡 (𝑣)) = 𝑔𝑡[ (𝛼𝑡 (𝑣)) .

Applying the above results to Equation (11), we have

𝑟𝑡 (𝑣) ≤
(

1

2

−
len(𝑆𝑡 )∑︁
𝑘=1

𝑠𝑡,𝑘[ (𝛼𝑡 (𝑣))
)+
𝑔𝑡 + [ (𝛼𝑡 (𝑣))𝑔2

𝑡 .

One refers to Figure 7 for a visualized characterization of the terms in the above equation.

Specifically, the absolute value of the first term on the right hand side of the above equation

corresponds to the sum of the sizes of Area 1 and 2 in Figure 7, and the second term corresponds to

the size of Area 1.

Concluding the above two cases, we complete the proof.

0.5

Area 1

Area 2

Fig. 7. Visualized proof for Case (2).
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A.4 A proof of Corollary 2
The sum of the node regrets except the leaf node is∑︁

𝑣∈path(𝑣∗)\{𝑣∗ }

(
1

[1 (𝑣)
+𝑇𝑈 2

𝑣𝑟
[1 (𝑣) +

1

[2 (𝑣)
+ 2𝑇𝑈𝑣𝑙𝑈𝑣𝑟[2 (𝑣) +𝑈𝑣𝑙 +𝑈𝑣𝑟

)
=𝑂

©«
∑︁

𝑣∈path(𝑣∗)\{𝑣∗ }

√︁
2𝑈𝑣𝑙𝑈𝑣𝑟𝑇 +𝑈𝑣𝑟

√
𝑇
ª®¬ = 𝑂

(√︁
𝑈1

log𝐾∑︁
𝑙=1

√︁
𝑈

2
𝑙−1
𝑇

)
.

The leaf node only contains one expert, and thus its regret is 0. This completes the proof.

Adding the node regret of the leaf node 𝑣∗ yields the final result.

A.5 Proof of the Lower Bounds
We first prove the lower bound for the two-expert case in Theorem 2. To prove the lower bound,

we construct the rewards for the two experts as follows. For the first expert, we set rewards to be

𝑈1/2 over all the 𝑇 time slots. For the second expert, we first randomly select 𝑇𝑈1/𝑈2 time slots

from the entire time horizon with the same probability. The set of selected time slots is denoted

by T𝑠 . Then, we assign 0 or𝑈2 rewards to those time slots with equal probability. In this way, the

reward means of both experts are𝑈1/2.
For ℎ ≤ 𝑇 /4𝑈1𝑈2, the probability that the cumulative empirical rewards of the second expert is

larger than or equal to 𝑇𝑈1/2 + ℎ is

Pr

[∑︁
𝑡 ∈T𝑠

𝑥𝑡 (2) ≥
𝑈1𝑇

2

+ ℎ
]
= Pr

[∑︁
𝑡 ∈T𝑠

𝑥𝑡 (2) ≥
𝑇𝑈1

𝑈2

· 𝑈2

2

+ ℎ
]

= Pr

[∑︁
𝑡 ∈T𝑠

𝑥𝑡 (2)
𝑈2

≥ 𝑇𝑈1

𝑈2

· 1

2

+ ℎ

𝑈2

]
≥ 1

15

exp

(
−16

𝑇𝑈1

𝑈2

(
ℎ

𝑇𝑈1

)
2

)
=

1

15

exp

(
−16

ℎ2

𝑈1𝑈2𝑇

)
,

The last inequality is based on the standard concentration results for binomial distribution with

mean 1/2 for 𝑇𝑈1/𝑈2 trails (see [4]). Let ℎ =
√
𝑈1𝑈2𝑇 /8, we have

Pr

[∑︁
𝑡 ∈T𝑠

𝑥𝑡 (2) ≥
𝑇𝑈1

2

+ 1

8

√︁
𝑈1𝑈2𝑇

]
≥ 1

15

exp

(
−1

4

)
>

1

20

.

It follows that

E

[
max

𝑖=1,2

𝑇∑︁
𝑡=1

𝑥𝑡 (𝑖)
]
≥ 1

20

(
𝑇𝑈1

2

+
√
𝑈1𝑈2𝑇

8

)
+ 19

20

· 𝑇𝑈1

2

=
𝑇𝑈1

2

+ 1

160

√︁
𝑈1𝑈2𝑇 .

Any algorithm can only attain𝑈1𝑇 /2 reward in expectation. Thus, the regret of any algorithm is

Ω(
√
𝑈1𝑈2𝑇 ). This completes the proof.

In the following, we proceed to analyze the general cases with more than two experts. Specifically,

we use num(𝑈𝑖 ) to denote the number of experts whose upper bound is larger than or equal to𝑈𝑖 .

Let 𝑖 be any expert in K . We set rewards of the 𝑖-th expert to be 𝑈𝑖/2 over all the 𝑇 time slots

and those in the experts whose upper bound less than 𝑈𝑖 as 0. For the 𝑖 ′-th expert whose upper

bound is large than or equal to𝑈𝑖 , we first randomly select 𝑇𝑈𝑖/𝑈𝑖′ time slots from the entire time

horizon with the same probability. The set of selected time slots is denoted by T𝑖′ . Then, we assign
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0 or 𝑈𝑖′/𝑈𝑖 rewards to those time slots with equal probability. In this way, the reward means of all

experts are𝑈𝑖/2.
Similar to the above proof, for 𝑖 ′ satisfying𝑈𝑖′ ≥ 𝑈𝑖 , we have

Pr


∑︁
𝑡 ∈T𝑖′

𝑥𝑡 (𝑖 ′) ≥
𝑈𝑖𝑇

2

+ ℎ
 = Pr


∑︁
𝑡 ∈T𝑖′

𝑥𝑡 (𝑖 ′)
𝑈𝑖′

≥ 𝑈𝑖𝑇
2𝑈𝑖′
+ ℎ

𝑈𝑖′


≥ 1

15

exp

(
−16

𝑇𝑈𝑖

𝑈𝑖′

(
ℎ

𝑇𝑈𝑖

)
2

)
=

1

15

exp

(
−16

ℎ2

𝑈𝑖𝑈𝑖′𝑇

)
,

whereℎ ≤ 𝑇 /4𝑈𝑖𝑈𝑖′ . Define𝐴𝑖′ as the event
∑
𝑡 ∈T𝑖′ 𝑥𝑡 (𝑖

′) ≥ 𝑈𝑖𝑇

2
+ℎ𝑖′ , whereℎ𝑖′ =

√︁
𝑈𝑖𝑈𝑖′𝑇 ln num(𝑈𝑖 )/4.

It follows that

𝑃

( ⋃
𝑖′:𝑈𝑖′ ≥𝑈𝑖

𝐴𝑖′

)
≤

∏
𝑖′:𝑈𝑖′ ≥𝑈𝑖

(
1 − 1

15num(𝑈𝑖 )

)
≤

(
1 − 1

15num(𝑈𝑖 )

)num(𝑈𝑖 )
≤ exp(−1/15) < 0.95.

𝐴𝑖′ happens with equal probability. Hence,

E

[
max

𝑖∈K

𝑇∑︁
𝑡=1

𝑥𝑡 (𝑖)
]
≥

∑︁
𝑖′:𝑈𝑖′ ≥𝑈𝑖

1

20

1

num(𝑈𝑖 )

(
𝑇𝑈𝑖′

2

+
√︁
𝑈𝑖𝑈𝑖′𝑇 ln num(𝑈𝑖 )

8

)
+ 19

20

· 𝑇𝑈𝑖
2

=
𝑇𝑈𝑖

2

+ 1

160

1

num(𝑈𝑖 )
∑︁

𝑖′:𝑈𝑖′ ≥𝑈𝑖

√︁
𝑈𝑖𝑈𝑖′𝑇 ln num(𝑈𝑖 ).

Any algorithm can only attain𝑈𝑖𝑇 /2 reward in expectation. Thus, the regret of any algorithm is

Ω
(

1

num(𝑈𝑖 )
∑
𝑖′:𝑈𝑖′ ≥𝑈𝑖

√︁
𝑈𝑖𝑈𝑖′𝑇 ln num(𝑈𝑖 )

)
. We complete the proof of Theorem 3.
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