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Abstract—There are many applications scenarios in different
disciplines where the critical knowledge of decision making
arrives in a sequential manner, so the optimization must be done
in an online fashion. An important class of online optimization
problems that have been extensively studied in the past is online
linear programs. This paper tackles a general class of online
linear programs that take into account the online arrival of the
constraint entries related to the available budget and demand
for different problem settings. This generalization is motivated
by many recent applications on revenue management or resource
allocation problems with the unknown and time-varying budget.
As the main contribution of this paper, we propose a decoupling
strategy that can be used to reduce the general problem into a
series of subproblems with offline entries for the budget and
demand. Using the proposed strategy, one can decouple the
general problem, leverage the state-of-the-art algorithms for the
online subproblems with fixed constraints, and achieve the same
performance for the general problem. As for a case study, we
apply the strategy to an extension of the one-way trading problem
with the dynamic budget.

I. INTRODUCTION

In many optimization communities such as economics,
operations research, and computer science, there is a category
of problems in which the complete knowledge of the inputs
to the problem is not available in advance. In other words,
the inputs to the problem arrive sequentially in an online
fashion. These scenarios are known as online optimization
or decision making under uncertainty that has been studied
using a wide range of theoretical tools and in a broad set of
applications. In online optimization, the decisions are made
in an online fashion, while the uncertainty of future inputs
makes it usually impossible to achieve the optimal solution.
Hence, there has been a substantial effort to propose online
algorithms using different tools and performance metrics.
Notable examples are competitive algorithms with competitive
ratio as the performance metric [1]–[3], online learning with
regret as the performance metric [4], [5], and reinforcement
learning with different modeling techniques such as Markov
decision process and designing optimal policies in expecta-
tion [6]. Recent notable application scenarios in which theo-
retical results have had an impact on real-world design include
data center optimization [7]–[9], energy systems [10]–[14],

cloud management [15], [16], computer and communication
networks [17]–[20], and beyond.

This paper studies a category of online linear programming
problems with uncertain constraints using the online com-
petitive framework and competitive ratio as the performance
metric. In the following, a brief research background along
with related works is presented.

A. Background and Related Works

In many applications on revenue management and resource
allocation [21], [22], the underlying problem could be modeled
as a linear program, where the coefficients of the objective
function arrive online. Generally, these problems can be either
formulated as a minimization or maximization versions of
online linear programs. The offline formulation of an online
linear program is as follows.

maximize
n∑

i=1

p(i)x(i)

subject to
n∑

i=1

a(i)x(i) ≤ b,

variables x(i) ∈ R+.

(1)

One can interpret Problem (1) as maximizing the profit given
a limited resource (budget) b. More specifically, the objec-
tive, which is the sum of a linear combinations of variable
x(i) weighted by coefficient p(i), can be considered as the
cumulative profit obtained across n time slots. Then, entry
b, defines the budget/capacity constraint on x(i), and could
be interpreted as the limitation of physical resource, e.g.,
storage capacity in [21], [22]. In the literature, researchers
also consider the case when there are multiple resources. One
can refer to [23], [24]. In this paper, we develop our results
for linear programs with single resource. In the terminology
of this paper, b is called the budget entry, p(i) that determines
the earned profit by consuming a unit of resource, is called the
price entry, and a(i) that determines the amount of resource
consumption is called the weight entry.

Problem (1) can be solved in offline manner, however, many
applications emphasize the need for online solution design, in
which all or a subset of the entries can be only accessed piece



by piece as time goes on. For example, in the one-way trading
problem [25], as a special case of problem (1), the price entries
p(i) arrive online and the other entries are given in advance.

For the aforementioned problem, there are extensive works
that develop online competitive algorithms for the underlying
online problems that make decisions at each time slot, knowing
the past and current online inputs, but not knowing those
same inputs for the future. The classic approach for analysis
of online algorithms is competitive analysis [1], where the
goal is to design algorithms with the smallest competitive
ratio. Competitive ratio of an online algorithm is defined as
the maximum possible profit ratio between an offline optimal
algorithm that has access to complete input sequence and the
online algorithm. The goal is to devise online algorithms that
have provably the smallest competitive ratio.

Using the competitive framework, there is an extensive
literature on online linear programs in different settings. For
related results and detailed competitive analysis of these
problems, we refer to [25]–[31]. [25] studies a particular
online linear program, i.e., the one-way trading problem,
where the price entries p(i) comes sequentially. In this work,
the authors consider several online settings, including the
cases that the price interval [L,U ] is known to the player
and that only the fluctuation ratio U/L is available. [26]
considers a planning game problem, where they assume that
the difference between two consecutive prices is not too large.
That is, p(i)/β ≤ p(i + 1) ≤ αp(i) holds for every i and
for α, β > 1. Last, [31] studies a one-way trading problem
where the prices do not respect any region constraints and
proposes an algorithm that does not impose any bounds on
market prices. Precisely, the performance guarantee of their
algorithm depends directly on the input.

Besides the aforementioned maximization problems, there
are several online cost minimization problems that can be
seen as a converse version of the maximization problems.
In these problems, instead of having packing constraints and
budget entries, one deal with covering constraints and demand
entries. An example is the k-min search problem [32] that
minimizes the linear objective of

∑n
i=1 c(i)x(i), in which the

entries c(i) represents the cost and subject to the constraint∑n
i=1 x(i) ≥ k. The k-min search problem can be explained

by an application scenario where one wants to buy at least
k items from a time-varying market using the minimum
payment. At the ending time, the remaining items must be
bought if the number of the items is less than k. In the k-min
search problem, the demand entry, i.e., k, as the target number
of items to be purchased, is given in advance, however, the
objective (cost entries) is revealed online. More details about
k-min search problem along with optimal online algorithms
for this problem is studied in [32].

B. Problem Statement

In the existing literature on online linear programming of
Problem (1), the price/cost, arrive online and consider different
settings for designing algorithms. This paper studies the case

that in addition to the above entities, the budget/demand
entries also arrive in online manner.

The interpretation of online arrival of budget/demand entries
using the previously mentioned examples is as follows. In
one-way trading, the extension considers dynamic changes in
the availability of the budget over time. In k-min search, it
captures the case that the number of items to be bought is not
fixed and will change as time goes on.

This extension is motivated by several recent application
scenarios. A notable example is the online offering problem of
storage-assisted renewable energy in the deregulated electricity
market [22]. The decision maker is a renewable generation
company who wants to sell renewable power to the market
with a goal of maximizing the profit. In addition, the renewable
plant is equipped by on-site energy storage systems that can
be used to store renewable generation for future use. The
price for the admitted power is dynamic and is settled based
on dynamics to balance between supply and demand. The
profit maximization problem for the renewable company can
be represented as an extension of one-way trading problem
with renewal of budget at each slot [22], in which both the
market price and budget (renewable generation) entries arrive
in online manner. The question is, heavily dependent on the
environmental conditions, the energy harvest of renewable
plants from the environment is rather random, and it is very
challenging for a renewable company to accurately predict
its output. With uncertainties in both price and renewable
generation, we have a more complicated online linear program
that can not be modeled by the existing algorithms for one-
way trading algorithm.

In the same way, the online cost minimization problem
can be also extended to a more general version where both
the objective (price entries) and the demand entries arrive
online. For example, in a data center, an significant portion
of workload is time-shiftable with a deadline. Upon arrival of
a new workload, the execution of workload must be scheduled
within the deadline. In reality, the cost of the data center
on processing one unit of the demand and the amount of
demand can be both revealed online. This results in a cost
minimization problem with online arrival of cost and demand
entries, extending the k-min search problem.

In this paper, we only formulate the problem maximization
versions. It is worth noting that the our proposed decoupling
strategy can be extended to the minimization problems as well.
With online price and resource entries, we reformulate the
general online linear program as follows.

maximize
n∑

i=1

p(i)x(i)

subject to
j∑

i=1

a(i)x(i) ≤ b(j),

j = 1, 2, . . . , n.
variables x(i) ≥ 0.

(2)

In the above problem, all the entries p(i), the weight entries
a(i), and the budget entries b(j) are time-varying and arrive
online. To the best of our knowledge, this setting with online



arrival of all entries to the problem is not studied in the
literature, and the existing work tackle online linear problems
with a subset of entries as online inputs [25], [27], [30], [32],
[33].

C. Our Contribution

In this paper, we focus on maximization version of online
linear problems and propose a novel decoupling strategy for
the online linear programs with online budget entries. Using
the proposed strategy, the original problem can be decoupled
to multiple simpler subproblems each of which with a fixed
offline budget entry. In this way, one can map the subproblems
into the well-studied class of problems, and guarantee the same
performance, i.e., competitive ratio, for the general case with
unknown budget entries. In other word, our result demonstrates
that with extreme uncertainty in all entries, the same level of
performance guarantee could be achieved as compared to the
case with partial uncertainty in the input. While our results
is presented for the maximization problem, the strategy could
be extended for the minimization problems as well.

As for a case study, we apply the decoupling strategy to
solve the one-way trading problem [25] with online arrival of
budget entries over time. We show that by using our strategy,
we can develop an online algorithm with the same competitive
ratio to the one-way trading problem.

The rest of the paper is organized as follows. In Section II,
we introduce a general decoupling framework for the online
linear program with online budget entries. In Section III, the
decoupling strategy will be applied to solve a general one-way
trading problem with online arrival of the budget. Finally, we
conclude the paper and highlight future work in Section IV.

II. THE PROPOSED DECOUPLING STRATEGY

In this section, we will introduce a general strategy to
decouple the online linear program (2) with uncertain bud-
get constraints into multiple online subproblems with offline
budget entries. The key in the proposed decoupling strategy
is to reformulate Problem (2) into an equivalent problem as
follows

maximize
n∑

j=1

n∑
i=j

p(i)x(j, i)

subject to
n∑

i=j

a(i)x(j, i) ≤ b(j)− b(j − 1),

j = 1, 2, . . . , n,
variables x(j, i) ≥ 0, i ≥ j.

(3)

As compared to Problem (2), in Problem (3), we introduce
another optimization variable x(j, i) which can be decoupled
in different subproblems. Further, the packing constraint is
also re-formulated to facilitate the decoupling of the original
problem into several subproblems.

The following result demonstrates that Problems (2) and (3)
are equivalent, i.e., having an optimal solution for (3), one can
readily construct the optimal solution of (2), also, the optimal
values for both problems are equal.

Theorem II.1. Assume b(j) is increasing as j increases. Let
x∗(j, i), i ≥ j, be an optimal solution for Problem (3). Then,

x∗(i) =
i∑

j=1

x∗(j, i), i = 1, 2, . . . , n, is an optimal solution

for Problem (2). In addition, the optimal value of Problem (3)
is equal to that of Problem (2).

Proof. First, by rearranging the items, we rewrite the objective

of Problem (3) as
n∑

i=1

p(i)
i∑

j=1

x(j, i).

Second, we show that by having a feasible solution to Prob-
lem (3), we can construct a feasible solution to Problem (2).
Assume that x(j, i) ≥ 0, i ≥ j is a feasible solution. Then,
for l = 1, 2, . . . , n, we have

l∑
i=1

a(i)

i∑
j=1

x(j, i) ≤ b(l).

Let x(i) =
∑i

j=1 x(j, i). We have
∑l

i=1 a(i)x(i) ≤ b(l).
That is, for each feasible solution x(j, i) ≥ 0, i ≥ j, we can
find a feasible solution x(i) =

∑i
j=1 x(j, i) for problem (2),

and the value under x(i) is equal to that of Problem (3) under
x(j, i).

Third, we show that for a feasible solution x(i) to Prob-
lem (2), we can construct a feasible solution to Problem (3),
i.e., x(j, i) ≥ 0, i ≥ j. Let x(1, i) = x(i) for i = 1, 2, . . . , n,
and x(j, i) = 0 for j > 1. Obviously,

∑i
j=1 x(j, i) = x(i)

for i = 1, 2, . . . , n. In each step, when we increase/decrease
x(j, i) by δ, we must correspondingly decrease/increase x(l, j)
(l 6= i) by δ. In this way, we can guarantee that x(i) =∑i

j=1 x(j, i) all the time. Then, if there is a j such that∑n
i=j a(i)x(j, i) > b(j)−b(j−1), we have that there must be

some l such that
∑n

i=l a(i)x(l, i) < b(l)−b(l−1).1 Otherwise,
we have

b(n) =

n∑
l=1

b(l)− b(l − 1)

<

n∑
l=1

n∑
i=l

a(i)x(l, i)

≤
n∑

i=1

a(i)

i∑
l=1

x(l, i)

=

n∑
i=1

a(i)x(i).

contradicting the assumption for x(i). In this
way, we can always decrease x(j, i) such that
n∑

i=j

a(i)x(j, i) ≤ b(j)− b(j − 1) for all j.

That is, we can find x(j, i) which satisfies x(i) =∑i
j=1 x(j, i) and meanwhile the constraints in Problem (3).

Obviously, the value is also equal.
Combining the above arguments, we have that the optimal

values of Problem (2) and (3) are equal. Specifically, when

1By convention, b(0) = 0.



x∗(j, i) ≥ 0, i ≥ j is an optimal solution for Problem (3),
x∗(i) =

∑i
j=1 x

∗(j, i), i = 1, 2, . . . , n, is also an optimal
solution for Problem (2). This completes the proof.

Problem (3) reformulates the original problem and it can
be decoupled by solving multiple subproblems. The j-th
subproblem is as follows.

maximize
n∑

i=j

p(i)x(j, i)

subject to
n∑

i=j

a(i)x(j, i) ≤ b(j)− b(j − 1),

variables x(j, i) ≥ 0, i ≥ j.

(4)

Note that in Problem (4), the value of j is fixed, and its time
horizon is from j to n. With fixed j, there is a fixed packing
constraint specified by b(j)−b(j−1). In its online version, the
entries p(i) are revealed piece by piece, and the budget entries
are available in offline manner at the beginning of the first slot.
At time slot i (i ≥ j), the available information involves p(l)
and a(l) for l = j, j+1, . . . , i. Based on the above explanation,
each subproblem can be seen as the classic online packing
problem as formulated in Problem (1). Therefore, the extensive
research works on the problem where the budget constraint
is fixed and known [25], [27] could be used to solve each
subproblem.

Now, we explain how to leverage the online algorithms for
subproblems and construct an online algorithm for the general
case. For the j-th subproblem, assume that there is an online
algorithm whose competitive ratio is rj . We construct the
online algorithm for Problem (2) as follows. Let x̂(j, i), i ≥ j,
be the decision of the j-th algorithm at time slot i. Then, the
decision of the constructed general online algorithm at slot i is
x̂(i) =

∑i
j=1 x̂(j, i). Finally, we have the following theorem

on the competitiveness of the constructed online algorithms
for the general case.

Theorem II.2. For the online algorithm whose decision at
time slot i takes x̂(i) =

∑i
j=1 x̂(j, i), it achieves the compet-

itive ratio of maxj rj .

Proof. First, the profit earned by the online algorithm is

n∑
i=1

p(i)

i∑
j=1

x̂(j, i) =

n∑
j=1

n∑
i=j

p(i)x̂(j, i).

Let OPT be the offline optimal value of Problem 3 and OPTj

be the offline optimal value for Problem 4. We have

cr =
OPT

n∑
j=1

n∑
i=j

p(i)x̂(j, i)

=

n∑
j=1

OPTj

n∑
j=1

n∑
i=j

p(i)x̂(j, i)

≤max
j
rj .

The second equality is by Theorem II.1. This completes the
proof.

The result in above theorem shows that by integrating the
online decisions for each subproblem, the competitive ratio of
the online linear programming problem with unknown budget
entries can attain that for the simple case with fixed constraint.
For the case that there is an online algorithm with optimal2

competitive ratio for each subproblem.

Corollary II.3. If x̂(j, i), (i ≥ j) is an optimal online solution
for the j-th subproblem, the online algorithm whose decision
takes x̂(i) =

∑i
j=1 x̂(j, i) achieves the optimal competitive

ratio.

In many paradigms such as the one-way trading problem,
the optimal competitive ratio can be attained [25], so, with the
result in this paper, one can find optimal online algorithms
for the extended setting with uncertain budgets. In the next
section, we apply this strategy to construct an optimal online
algorithm for the general case of the one-way trading problem.

III. APPLICATION TO THE ONE-WAY TRADING PROBLEM
WITH UNCERTAIN BUDGET

The one-way trading problem is a classic paradigm of online
linear programming. In the one-way trading problem, one is
required to maximize a liner objective

∑n
i=1 p(i)x(i) while

respecting a given constraint
∑n

i=1 x(i) ≤ b. The objective
is correspondingly the cumulative production of the prices
and amount of sold items at each time slot. The entries
p(i), i = 1, 2, . . . , n, correspond to the market prices over
time and x(i), i = 1, 2, . . . , n, are the amounts of sold items.
Both p(i) and x(i) are nonnegative. The variable x(i) can be
either an integer or a fractional number according to different
scenarios and the summation of x(i) should be less than or
equal to b, as the budget constraint. The offline formulation is

maximize
n∑

i=1

p(i)x(i)

subject to
n∑

i=1

x(i) ≤ b,

variables x(i) ∈ R+.

(5)

In this paper, and for the online version, we assume the end-
ing time and the constraint (the number of available items) is
given and known in advance while the price entries p(i), which
are assumed to be in a fixed region [L,U ], are unknown and
arrive sequentially. Sequential market prices are reasonable in
real market, where many complex supply demand relationships
work together and influence the dynamics in price. In the
online case, the decisions of the designed algorithm are based
on only the current and past information on the market price.
The optimal algorithm for the one-way trading problem attains
a competitive ratio of O(ln(U/L)) [25]. One can find that the
one-way trading problem can be seen as a special case of
Problem (2).

2An online algorithm with optimal competitive ratio achieves the best
possible competitive ratio, i.e., no other algorithm can achieve a better
competitive ratio.



Consider the following general one-way trading problem
where we assume the revelation of the market prices is online.
In addition to the above online settings, we assume the budget
constraints are unknown and time-varying. The offline version
of the extended version one-way trading problem is as follows.

maximize
n∑

i=1

p(i)x(i)

subject to
j∑

i=1

x(i) ≤ b(j),

variables x(i) ∈ R+.

(6)

Note that when b(j) = b, the above problem will be reduced
to the offline version of the one-way trading problem where
the total amount of sold items is fixed.

Now, we apply the proposed decoupling strategy in Sec-
tion II to tackle Problem (6).

The original allocation problem can be decoupled to the
subproblems each of which corresponds to allocating the
arriving items at one time slot. Specifically, the arriving budget
b(j) − b(j − 1) at j-th time slot is allocated among the time
slots from j to n by an independent online algorithm as shown
in the Appendix A. We use d(j, i), i ≥ j, to denote the sold
amount of the online algorithm for subproblem j at time slot
i. The sold amount can be determined by the online algorithm
introduced in the Appendix A. Applying the algorithm in
Appendix A, we can guarantee a ln(U/L) + 1 competitive
ratio for the subproblem of selling the b(j)− b(j− 1) amount
of items, where U and L are the maximum and minimum
market price, respectively.

By the proposed decoupling strategy, the sold amount at
time slot j is set to

∑j
i=1 d(j, i). The profit earned by the

online algorithm is

n∑
i=1

p(i)

i∑
j=1

d(j, i) =

n∑
j=1

n∑
i=j

p(i)d(j, i).

On the other hand, the optimal profit earned by the offline
algorithm is pmax,j [b(j)−b(j−1)], where pmax,j is defined as
the maximum price during [j, n]. Then, the competitive ratio
of the online algorithm satisfies

cr ≤

n∑
j=1

pmax,j [b(j)− b(j − 1)]

n∑
j=1

n∑
i=j

p(i)d(j, i)

≤ max
j=1,2,...,n

pmax,j [b(j)− b(j − 1)]
n∑

j=1

n∑
i=j

p(i)d(j, i)

= max
j=1,2,...,n

crj ,

where crj is the competitive ratio for the j-th subproblem.
From the competitive analysis in the appendix, we have that
one can guarantee a competitive ratio of ln(U/L)+1 for each
subproblem. Thus, the competitive ratio is ln(U/L) + 1 for
the general problem.

IV. CONCLUSION

In this paper, we proposed a novel decoupling strategy
to deal with the online linear programming problem with
unknown budget entries. By using a novel decoupling strategy,
the general online linear program can be decoupled to several
subproblems each with fixed budget constraints given in of-
fline. As for a case study, we applied the proposed strategy
to the one-way trading problem with dynamic budget, and
achieved the optimal competitive ratio similar to the basic one-
way trading problem without dynamic budget.

While we presented our results for the maximization prob-
lem, the proposed strategy could also be used to tackle min-
imization problems with online arrival of demand entries. As
for the future work, we plan to tackle even more general online
linear programs with constraints with multiple resources.
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APPENDIX

A. Optimal Online Algorithms for One-way Trading

In one-way trading problem, the market prices are revealed
pieces by piece, so the decisions of the online algorithm can be
only based on past information. First, we define the following
function

g(x) =

{
L, x ≤ b

ln(U/L)+1 ,

L exp
(
(ln(U/L) + 1)xb − 1

)
, otherwise.

The online algorithm maintains a variable P , which records
the maximum price observed so far. At each time slot i, if p(i)
is larger than P , we set the value if x(i) as follows

x(i) = g−1(p(i))− g−1(P ).

The profit earned by the online algorithm is correspondingly
p(i)[g−1(p(i))−g−1(P )], which corresponds to the rectangles
shown in Figure 1. Let pi be the price which is larger than P ,

the profit earned by the online algorithm is just equal to the
orange area.
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Fig. 1. An illustration of function g and the earned profit by the online
algorithm.

Let pmax be the maximum price during the n time slots,
and let xend be the total amount of sold items, we have the
profit earned by the online algorithm is at least∫ xend

0

g(x)dx.

On the other hand, the profit earned by the optimal offline
algorithm is at most bpmax. According to the features of g
function, we have

pmaxb∫ xend

0
g(x)dx

=
Lb exp

(
(ln(U/L)+1)xend

b − 1
)

Lb
ln(U/L)+1 + Lb

ln(U/L)+1 exp
(

(ln(U/L)+1)xend
b − 1

)
− Lb

ln(U/L)+1

= ln(U/L) + 1.

That means that the above online algorithm is
(ln(U/L) + 1)-competitive, achieving the optimal
performance.


