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a b s t r a c t

In this paper, we introduce a delay dependent Lyapunov equation (DDLE) approach to study the mean
square stabilization for discrete time stochastic system with both input delay and control dependent
noise. The innovative contributions of this paper are twofold. First, for a general stochastic system with
input delay and multiplicative noises, we derive a necessary stabilizing condition based on a coupled
Lyapunov equation (CLE). Second, we present a set of necessary and sufficient stabilizing conditions for
the considered stochastic system. We show that the stochastic system is stabilizable is equivalent to that
the DDLE has a positive definite solution. In this case, the constructed CLE is equivalent to the DDLE.
Moreover, based on the Lyapunov stabilizing result, we further derive a spectrum stabilizing criterion. To
confirm the effectiveness of our theoretic results, two illustrative examples are included.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Since a class of practical models can be described as stochastic
systems, stochastic control theory has attracted considerable in-
terest in a variety of the engineering fields over the past several
decades; See [1–10] for a partial list of references. Parallel to the
control theory for deterministic systems, a great deal of control
problems have been extended to stochastic models, such as sta-
bilization, optimal filter, linear quadratic (LQ) optimization. In [5],
the indefinite stochastic LQoptimization problemwas investigated
and the optimal control policy was developed via a unique stabi-
lizing solution to a generalized algebraic Riccati equation (GARE).
In [6], for stochastic system with multiplicative noise, a neces-
sary and sufficient stabilizing condition was derived with operator
spectrum theory, which is said to be the spectrum stabilizing
criterion. Moreover, in [10], the Lyapunov stabilizing criterion was
proposed in terms of the feasibility of a certain LMI, which can be
verified by LMI solvers inMATLAB. Comparedwith Riccati type and
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spectrum type criteria, the Lyapunov stabilizing criterion is much
convenient to verify.

Recently, networked control systems (NCSs) that exchange in-
formation between a plant and a remote controller through a
shared communication network have been a topic of active re-
search in both the academia and the industry; See [11–17] and
the references therein. In an open communication network, signal
transmission over a routing path invariably experiences transmis-
sion delay and packet dropout. These uncertainties may degrade
the system performance and even destabilize the whole system.
Generally speaking, it is common to model an integrated NCS
with both transmission delay and packet dropout as a stochastic
system with input delay and control dependent noise. Therefore,
it is of great significance to study the stabilization problem of
such stochastic systems. In [18], the stochastic LQ optimization and
stabilization was considered for a class of discrete time stochastic
systems involving input delay and multiplicative noises. The nec-
essary and sufficient stabilizing condition was derived in terms of
a unique positive definite solution to a coupled Riccati equation
(CRE)with two variables, where the optimal and stabilizing control
policywas shown to be the feedback of the conditional expectation
of the state. However, it is quite difficult to compute the value of
the positive definite solution satisfying the CRE. To the best of our
knowledge, how to best utilize available information to design a
stabilizing control policy as well as the search for the less conser-
vative Lyapunov type stabilizing condition remain open questions.

In this paper, we focus on the mean square stabilization prob-
lem for a discrete time stochastic systemwith both input delay and
control dependent noise. Our research methodology is described
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as follows. First, we consider a general stochastic system with
input delay andmultiplicative noises. Under the assumption of the
mean square stabilization, we construct a CLE, which is the basis
to derive the Lyapunov stabilizing criterion. Second, we derive a
set of DDLE based conditions for stabilization. It is shown that
the considered stochastic system is stabilizable if and only if the
developed DDLE has a positive definite solution. Note that in this
case the CLE is equivalent to the constructed DDLE. Moreover, on
the basis of Lyapunov stabilizing criterion, we derive the spectrum
stabilizing criterion, in which we demonstrate that the stochastic
system is stabilizable if and only if the spectral radius is less than
one. These stabilizing criteria are first obtained in the framework
of stochastic system with both input delay and control dependent
noise, which run in parallel to the classical stochastic stabilization
results in [6,10].

Notations: Let A′ and Tr(A) denote the transpose and the trace
of matrix A. A ≥ 0(> 0) means that A is a positive semidefinite
(positive definite) matrix and A ≥ B (> B) means that A−B ≥ 0 (>
0). Let Rn be the n-dimensional real Euclidean space and Sn be the
space of all n × n positive semidefinite matrices. δts is a Kronecker
function. {wt , t ∈ N} means a sequence of real random variables
defined on the complete filtered probability space (Ω,F,P;Ft )
with F0 = {∅, Ω} and Ft = σ {ws, s = 0, . . . , t}. Define x̂t|s =

E[xt |Fs] which signifies the conditional expectation of xt w.r.t. Fs.

2. Problem formulation

Without loss of generality, we consider the following discrete
time stochastic system with input delay and control dependent
noise:

xt+1 = Axt + But−d + ω(t)Cut−d, (1)

where xt ∈ Rn is the state and ut ∈ Rm is the input control with a
constant input delay d > 0.We assume that x0, ui, i = −1, . . . ,−d,
are the given initial conditions. Moreover, we assume thatω(t) is a
scalar random white noise satisfying E[w(t)] = 0, E[w(t)w(s)] =

σ 2δts. For convenience, we describe system (1) as [A, B, C |d].
The objective of this paper is to explore the necessary and

sufficient stabilizing conditions of system, [A, B, C |d].
Before proceeding further, we introduce the following defini-

tion as follows.

Definition 1. System, [A, B, C |d], is said to be asymptoticallymean
square stabilizable, if there exists a feedback control policy ut−d =

Kx̂t|t−d−1, t ≥ d, such that the following closed-loop system

xt+1 = Axt + [B + ω(t)C]Kx̂t|t−d−1, (2)

is asymptotically mean square stable, i.e. for any initial values x0
and ui, i = −1, . . . ,−d, the state xt satisfies limt→∞ E∥xt∥2

= 0.

Remark 1. System, [A, B, C |d], has a wide application in practice.
To be specific, consider a wireless NCS as depicted in Fig. 1. The de-
signed control signal is transmitted to the actuator through a lossy
communication channel, where packet dropout and transmission
delay occur simultaneously. In [15], the NCS can be described by:

xt+1 = Axt + γtBut−d, (3)

where d > 0 is the transmission delay and {γt}t≥0 is an indepen-
dent and identically distributed (i.i.d.) Bernoulli process represent-
ing the packet loss with probability distribution P(γt = 0) = p ∈

(0, 1). Denote ωt = γt − E[γt ]. Then, system (3) can be rewritten
as:

xt+1 = Axt + (1 − p)But−d + wtBut−d, (4)

which is a special case of system, [A, B, C |d].

Fig. 1. NCS over wireless channel.

3. Main results

3.1. Necessary stabilizing condition

In this section,we propose a Lyapunov type necessary condition
for stabilization of a more general stochastic system. Consider the
following stochastic system with input delay and multiplicative
noises:

xt+1 = Axt + But−d +

h∑
i=1

ωi(t)[Āixt + B̄iut−d], (5)

where E[wi(t)] = 0, E[wi(t)wj(s)] = σ 2
ij δts, i, j = 1, . . . , h. For

any t ≥ 0 and 1 ≤ τ ≤ d + 1, define Xt = E[xtx′
t ] and

X̂t|t−τ = E[x̂t|t−τ x̂′

t|t−τ ].
To begin with, we give the following lemma which is the basis

to construct CLE.

Lemma 1. Consider system (5) with ut−d = Kx̂t|t−d−1, t ≥ d.
Then, Xt and X̂t|t−τ , 1 ≤ τ ≤ d + 1, satisfy the following difference
equations:

(a) For any 0 ≤ t ≤ d − 1, we have

Xt+1 = AXtA′
+ AE[xtu′

t−d]B
′
+ BE[ut−dx′

t ]A
′

+ BE[ut−du′

t−d]B
′
+

h∑
i=1

h∑
j=1

σ 2
ij

(
ĀiXt Ā′

j

+ ĀiE[xtu′

t−d]B̄
′

j + B̄iE[ut−dx′

t ]Ā
′

j

+ B̄iE[ut−du′

t−d]B̄
′

j

)
, (6)

X̂t+1|t−τ = AX̂t|t−τA′
+ BE[ut−du′

t−d]B
′

+ AE[xtu′

t−d]B
′
+ BE[ut−dx′

t ]A
′. (7)

(b) For any t ≥ d, we have

Xt+1 = A(Xt − X̂t|t−d−1)A′

+ (A + BK )X̂t|t−d−1(A + BK )′

+

h∑
i=1

h∑
j=1

σ 2
ij

(
Āi(Xt − X̂t|t−d−1)Ā′

j

+ (Āi + B̄iK )X̂t|t−d−1(Āj + B̄jK )′
)
, (8)

X̂t+1|t−τ = A(X̂t|t−τ − X̂t|t−d−1)A′

+ (A + BK )X̂t|t−d−1(A + BK )′. (9)

Proof. See Appendix A.

Next, with the help of Lemma 1, we are in a position to derive
the Lyapunov type necessary condition and construct a CLE as
follows.
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Theorem 1. Suppose that system (5) is stabilizable in the mean
square sense. For any Q ≥ 0, there exist matrices K and H ≥ P ≥ 0
satisfying the following CLE:

H = A(H − P)A′
+

h∑
i=1

h∑
j=1

σ 2
ij Āi(H − P)Ā′

j

+ Q + (A + BK )P(A + BK )′

+

h∑
i=1

h∑
j=1

σ 2
ij (Āi + B̄iK )P(Āj + B̄jK )′, (10)

P = AdH(Ad)′ −
d−1∑
t=0

At+1P(A′)t+1
+

d−1∑
t=0

AtQ (A′)t

+

d−1∑
t=0

At (A + BK )P(A + BK )′(A′)t . (11)

Moreover, if Q > 0, we have H ≥ P > 0.

Proof. See Appendix B.

When d = 0, system (5) canbe reduced to a delay free stochastic
system with multiplicative noises and (10)–(11) in Theorem 1 can
be rewritten as:

H = A(H − P)A′
+

h∑
i=1

h∑
j=1

σ 2
ij Āi(H − P)Ā′

j

+ Q + (A + BK )P(A + BK )′

+

h∑
i=1

h∑
j=1

σ 2
ij (Āi + B̄iK )P(Āj + B̄jK )′, (12)

P = H, (13)

which is

P = (A + BK )P(A + BK )′ + Q

+

h∑
i=1

h∑
j=1

σ 2
ij (Āi + B̄iK )P(Āi + B̄jK )′, (14)

It follows from Theorem 1 in [10] that the delay free stochastic
system (5) is stabilizable in the mean square sense if and only if
for any Q > 0, there exist matrices K and P > 0 satisfying (14).
In this case, the feedback control policy ut = Kx̂t|t−d−1 = Kxt is
stabilizing.

When wi(t) = 0, i = 1, . . . , h, system (5) is reduced to a
deterministic system [A, B|d] with input delay and the CLE (10) in
Theorem 1 can be rewritten as:

H − AHA′
= Q − APA′

+ (A + BK )P(A + BK )′, (15)

which implies that
d−1∑
t=0

At (H − AHA′)(A′)t = H − AdH(A′)d

=

d−1∑
t=0

At[Q − APA′
+ (A + BK )P(A + BK )′

]
(A′)t .

Comparedwith (11), we haveH = P . In this case, the CLE (10)–(11)
is equivalent to

− P + (A + BK )P(A + BK )′ + Q = 0. (16)

With themodified Smith predictor approach in [19], the determin-
istic system, [A, B|d], is stabilizable in themean square sense if and
only if for any Q > 0, there exist matrices K and P > 0 satisfying
(16).

Note that when system (5) is reduced to a delay free stochastic
system or a deterministic delayed system, the reduced system is
stabilizable in the mean square sense if and only if the CLE has
a positive definite solution. In this case, Theorem 1 becomes the
necessary and sufficient stabilizing condition. Unfortunately, how
to utilize the CLE to guarantee the stabilization for the general
stochastic system (5) remains open question.

3.2. Necessary and sufficient stabilizing condition

In this section, we explore the necessary and sufficient stabiliz-
ing conditions for system, [A, B, C |d]. It is interesting to find that
the mean square stabilization of system, [A, B, C |d], is equivalent
to that of the following delay free stochastic system, (A, B, AdC):

zt+1 = Azt + Bvt + ω(t)AdCvt , (17)

where vt is designed to be the feedback of the state andω(t) follows
the same probability distribution in (1).

We are now in a position to propose the following Lyapunov
stabilizing criterion.

Theorem 2. The following statements are equivalent.
(a) System, [A, B, C |d], is stabilizable in the mean square sense.
(b) System, (A, B, AdC), is stabilizable in the mean square sense.
(c) For any Q > 0, there exist matrices K and P > 0 satisfying the

following DDLE:

P = Q + (A + BK )P(A + BK )′

+ σ 2AdCKPK ′C ′(A′)d. (18)

(d) For any Q > 0, there exist matrices K and P > 0 satisfying the
following DDLE:

P = Q + (A + BK )′P(A + BK )

+ σ 2K ′C ′(A′)dPAdCK . (19)

(e) There exist matrices K and P > 0 such that:

P > (A + BK )′P(A + BK )

+ σ 2K ′C ′(A′)dPAdCK . (20)

(f) There exist matrices Y and S > 0 such that:⎡⎣ −S ∗ ∗

AS + BY −S ∗

σAdCY 0 −S

⎤⎦ < 0, (21)

where ∗ represents the corresponding transpose part. In this case, the
stabilizing feedback gain is K = YS−1.

Proof. See Appendix C.

In Theorem 2, a Lyapunov type stabilizing condition for system,
[A, B, C |d], is derived in terms of the positive definite solution to
a DDLE, which is equivalent to the CLE in Theorem 1. Thus, the
necessary condition in Theorem 1 is also sufficient for system,
[A, B, C |d]. Moreover, comparedwith the CRE in [18], the Lyapunov
stabilizing criterion in Theorem2 canbe verified by LMI solvers and
is much convenient to use.

Next, we propose the spectrum stabilizing criterion. Define the
following delay dependent Lyapunov operator LK (·) from Sn to Sn:

LK (X) = (A + BK )X(A + BK )′

+ σ 2AdCKXK ′C ′(A′)d, ∀X ∈ Sn. (22)

Definition 2. The spectrum set of operator LK (·) is defined as:

σ (LK ) = {λ ∈ C : LK (X̂) = λX̂, X̂ ∈ Sn, X̂ ̸= 0}. (23)

The spectral radius of LK (·) is defined as:

ρ(LK ) = max{|λ| : λ ∈ σ (LK )}. (24)
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Corollary 1. System, [A, B, C |d], is stabilizable in the mean square
sense if and only if there exists a feedback gain matrix K such that
ρ(LK ) < 1.

Proof. The proof can be derived directly by applying Theorem 1
in [9] and Theorem 2.

4. Illustrative numerical examples

In this section, we will use two examples to demonstrate the
effectiveness of our theoretic results.

Example 1. Consider the following discrete time stochastic system
(5) with σ 2

1 = 1, d1 = 1 and

A1 =

[
1
2 0

0 −
1
4

]
, B1 =

[
1 1

4

0 −
1
2

]
,

Ā1 =

[
3
4 −1

0 1
4

]
, B̄1 =

[
−

1
4

1
2

0 1
4

]
.

It is easy to verify that there exist

K1 =

[
−0.5 0
0 0.25

]
, Q1 =

[
1 0

0.25 0.25

]
> 0.

satisfying

Q1 ≥ A′

1Q1A1 + Ā′

1Q1Ā1, (25)
Q1 > (A1 + B1K1)′Q1(A1 + B1K1)

+ (Ā1 + B̄1K1)′Q1(Ā1 + B̄1K1). (26)

In this case, define the Lyapunov function

L1(xt ) = E[x′

tQ1xt ] = Tr(Q1Xt ). (27)

For any t ≥ d1, with ut−d1 = K1x̂t|t−d1−1, it follows from Lemma 1
that

L1(xt+1) − L1(xt ) = Tr(Q1Xt+1) − Tr(Q1Xt )

= Tr
{
(−Q1 + A′

1Q1A1 + Ā′

1Q1Ā1)(Xt − X̂t|t−d1−1)

+
[
− Q1 + (A1 + B1K1)′Q1(A1 + B1K1)

+ (Ā1 + B̄1K1)′Q1(Ā1 + B̄1K1)
]
X̂t|t−d1−1

}
< 0,

which yields that system, [A1, B1; Ā1, B̄1|d1], is stabilizable. By The-
orem 1, the CLE (10)–(11) has the following positive definite solu-
tion

H1 =

[
13.0682 −0.2964
−0.2964 1.1474

]
> 0, P1 =

[
3.6139 0.0403
0.0403 1.0778

]
> 0.

Example 2. Consider the following system, [A2, B2, C2|d2], with
σ 2
2 = 1, d2 = 2 and A2 =

5
4 , B2 =

1
2 , C2 =

1
3 . By utilizing MATLAB,

we can give a simple path of w(t) as shown in Fig. 2.
Suppose the initial conditions are given with x0 = 2 and u−1 =

u−2 = 0. It follows from Lemma 1 that

X1 = A2X0A′

2 = 6.25, X2 = A2X1A′

2 = 9.7656.

Then, by solving (21) in Theorem 2, we find an admissible solution
that S2 =

1
4 and Y2 = −

1
4 , which implies that P2 = S−1

2 = 4 and
K2 = Y2P2 = −1. By Theorem 2, we obtain that u2 = −x̂t|t−3 is the
stabilizing control policy. The simulation of E[x2t ] is shown in Fig. 3.

Fig. 2. A simple path of w(t).

Fig. 3. Simulation of E[x2t ].

5. Conclusion

In this paper, we developed a DDLE based approach to study
the mean square stabilization problem for stochastic system with
input delay and control dependent noise. We proposed the neces-
sary and sufficient condition for stabilization in terms of a positive
definite solution to a DDLE, which is in parallel with the classical
results in stochastic control. However, how to utilize the DDLE
to guarantee the stabilization of a general stochastic time delay
systemwith state and control dependent noise remains open ques-
tion, which defines a promising future research direction.

Appendix A. Proof of Lemma 1

Proof. For Xt = E[xtx′
t ], it follows from (5) that

Xt+1 = AXtA′
+ AE[xtu′

t−d]B
′
+ BE[ut−dx′

t ]A
′

+ BE[ut−du′

t−d]B
′
+

h∑
i=1

h∑
j=1

σ 2
ij

(
ĀiXt Ā′

j

+ ĀiE[xtu′

t−d]B̄
′

j + B̄iE[ut−dx′

t ]Ā
′

j

+ B̄iE[ut−du′

t−d]B̄
′

j

)
, (A.1)
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which implies that (6) holds for 0 ≤ t ≤ d − 1. For any t ≥ d,
with the feedback control policy ut−d = Kx̂t|t−d−1, (6) can be
equivalently rewritten as

Xt+1

= AXtA′
+ AE[xtx′

t|t−d−1]K
′B′

+ BKE[xt|t−d−1x′

t ]

× A′
+ BKE[xt|t−d−1x′

t|t−d−1]K
′B′

+

h∑
i=1

h∑
j=1

σ 2
ij

×

(
ĀiXt Ā′

j + B̄iE[xt|t−d−1x′

t|t−d−1]B̄
′

j

+ ĀiE[xtx′

t|t−d−1]B̄
′

j + B̄iE[xt|t−d−1x′

t ]Ā
′

j

)
= A(Xt − X̂t|t−d−1)A′

+ (A + BK )X̂t|t−d−1

× (A + BK )′ +
h∑

i=1

h∑
j=1

σ 2
ij

(
Āi(Xt − X̂t|t−d−1)

× Ā′

j + (Āi + B̄iK )X̂t|t−d−1(Āj + B̄jK )′
)
, (A.2)

where E[x̂t|t−d−1x′
t ] = E[x̂t|t−d−1x̂′

t|t−d−1] = X̂t|t−d−1 can be used
to derive the last equality. Moreover, due to the fact that xt is
measurablew.r.t. the filterFt−1, we obtain x̂t|t−1 = xt , X̂t|t−1 = Xt .
In this case, for any 0 ≤ t ≤ d − 1, by taking the conditional
expectation w.r.t. Ft−τ , 1 ≤ τ ≤ d + 1, on both side of (5), we
have x̂t+1|t−τ = Ax̂t|t−τ + But−d, which implies that

X̂t+1|t−τ = AX̂t|t−τA′
+ BE[ut−du′

t−d]B
′

+ AE[xtu′

t−d]B
′
+ BE[ut−dx′

t ]A
′. (A.3)

Similarly, for t ≥ d, we have x̂t+1|t−τ = Ax̂t|t−τ + BK x̂t|t−d−1. It
follows that

X̂t+1|t−τ = A(X̂t|t−τ − X̂t|t−d−1)A′

+ (A + BK )X̂t|t−d−1(A + BK )′, (A.4)

which completes the proof.

Appendix B. Proof of Theorem 1

Proof. When system (5) is stabilizable in the mean square sense,
by Lemma 1, there exists a stabilizing control policy ut−d =

Kx̂t|t−d−1, t ≥ d, such that limt→∞ Xt = 0. For any 1 ≤ τ ≤ d+ 1,
denote x̃t|t−τ = xt − x̂t|t−τ , which is orthogonal to x̂t|t−τ . It follows
that

Xt = E
[
(x̂t|t−τ + x̃t|t−τ )(x̂t|t−τ + x̃t|t−τ )′

]
= X̂t|t−τ + E[x̃t|t−τ x̃′

t|t−τ ], (B.1)

which implies that 0 ≤ X̂t|t−τ ≤ Xt . When system (5) is stabiliz-
able, we have limt→∞ X̂t|t−τ = 0. For any 0 ≤ t ≤ d − 1, we have
x̂t|t−τ = E[xt ].

Let the initial conditions be X0 = Q ≥ 0 and ut−d =

Kx̂t|t−d−1, 0 ≤ t ≤ d−1. It follows from Lemma 1 that (8)–(9) hold
for any t ≥ 0. To construct the CLE (10)–(11), denote H =

∑
∞

t=0 Xt

and P =
∑

∞

t=0 X̂t|t−d−1. By Theorem 1 in [8], the stabilization of
system (5) guarantees the existence ofH and P . Moreover, we have
0 ≤ P ≤ H < ∞. Then, it follows from (8) that

−Q = lim
t→∞

Xt − X0 =

∞∑
t=0

(Xt+1 − Xt )

=

∞∑
t=0

[
−Xt + A(Xt − X̂t|t−d−1)A′

+ (A + BK )X̂t|t−d−1(A + BK )′

+

h∑
i=1

h∑
j=1

σ 2
ij

(
Āi(Xt − X̂t|t−d−1)Ā′

j

+ (Āi + B̄iK )X̂t|t−d−1(Āj + B̄jK )′
)]

= − H + A(H − P)A′
+ (A + BK )P

× (A + BK )′ +
h∑

i=1

h∑
j=1

σ 2
ij Āi(H − P)Ā′

j

+

h∑
i=1

h∑
j=1

σ 2
ij (Āi + B̄iK )P(Āj + B̄jK )′, (B.2)

which is equivalent to (10).
On the other hand, for any t < 0, denote X̂t|t−τ = 0. For any

0 ≤ t ≤ d − 1, it follows from (7) that

X̂t|t−d−1 = (A + BK )tQ ((A + BK )′)t . (B.3)

For any t ≥ d, it follows from (9) that

X̂t|t−d−1 = AX̂t−1|t−d−1A′
+ (A + BK )X̂t−1|t−d−1

× (A + BK )′ − AX̂t−1|t−d−2A′

= AdXt−d(A′)d +

d−1∑
i=0

Ai(A + BK )

× X̂t−i−1|t−i−d−2(A + BK )′(A′)i

−

d−1∑
i=0

Ai+1X̂t−i−1|t−i−d−2(A′)i+1. (B.4)

Then, by taking the sum from t = 0 to infinity on both side of (B.4),
we obtain

∞∑
t=0

X̂t|t−d−1 =

d−1∑
t=0

X̂t|t−d−1 +

∞∑
t=d

X̂t|t−d−1

=

d−1∑
t=0

(A + BK )tQ ((A + BK )′)t + Ad
∞∑
t=0

Xt (A′)d

+

d−1∑
i=0

Ai(A + BK )(
∞∑
t=d

X̂t−i−1|t−i−d−2)(A + BK )′(A′)i

−

d−1∑
i=0

Ai+1(
∞∑
t=d

X̂t−i−1|t−i−d−2)(A′)i+1. (B.5)

It is equivalent to

P =AdH(A′)d +

d−1∑
t=0

At (A + BK )P(A + BK )′(A′)t

−

d−1∑
t=0

At+1P̂(A′)t+1
+ L, (B.6)

where

L =

d−1∑
i=0

(A + BK )iQ ((A + BK )′)i −
d−2∑
i=0

Ai

×
[d−i−2∑

t=0

(A + BK )t+1Q ((A + BK )′)t+1](A′)i

+

d−2∑
i=0

Ai+1[d−i−2∑
t=0

(A + BK )tQ ((A + BK )′)t
]
(A′)i+1

= Q +

d−2∑
t=0

A(A + BK )tQ ((A + BK )′)tA′
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−

d−2∑
i=1

Ai[ d−i−2∑
t=0

A(A + BK )tQ ((A + BK )′)t

× K ′B′
+ BK (A + BK )tQ ((A + BK )′)tA′

+ BK (A + BK )tQ ((A + BK )′)tK ′B′
]
(A′)i.

It follows that L =
∑d−1

t=0 AtQ (A′)t . Therefore, we have (11) holds.
Moreover, if X0 = Q > 0, it follows that

H =

∞∑
t=0

Xt ≥ P =

∞∑
t=0

X̂t|t−d−1 ≥ Q > 0, (B.7)

which completes the proof.

Appendix C. Proof of Theorem 2

Proof. Similar to Theorem 1 in [10], we have that (c) ⇔ (d) and
(d) ⇔ (e). For the sake of simplicity, we prove that (a) ⇒ (c),
(d) ⇒ (b), (a) ⇔ (b), and (e) ⇔ (f ).

(a) ⇒ (c). Suppose system, [A, B, C |d], is stabilizable in the
mean square sense. By Theorem 1, for any Q > 0, there exist
matrices K and H ≥ P > 0 satisfying the following CLE:

H = A(H − P)A′
+ (A + BK )P(A + BK )′

+ σ 2CKPK ′C ′
+ Q , (C.1)

P = AdH(Ad)′ −
d−1∑
t=0

At+1P(A′)t+1
+

d−1∑
t=0

AtQ (A′)t

+

d−1∑
t=0

At (A + BK )P(A + BK )′(A′)t . (C.2)

Next, we show that the CLE (C.1)–(C.2) is equivalent to the DDLE
(18).

It follows from (C.1) that

H − AdH(A′)d =

d−1∑
t=0

At (H − AHA′)(A′)d

=

d−1∑
t=0

At[
−APA′

+ (A + BK )P(A + BK )′

+ σ 2CKPK ′C ′
+ Q

]
(A′)t . (C.3)

Compared with (C.2), we have

H = P + σ 2
d−1∑
t=0

AtCKPK ′C ′(A′)t . (C.4)

By applying (C.4) in (C.1), we have

P + σ 2
d−1∑
t=0

AtCKPK ′C ′(A′)t

= APA′
+ σ 2

d−1∑
t=0

At+1CKPK ′C ′(A′)t+1

− APA′
+ (A + BK )P(A + BK )′

+ σ 2CKPK ′C ′
+ Q , (C.5)

which is equivalent to the DDLE (18).
(d) ⇒ (b). Suppose there exist matrices K and P > 0 satisfying

the DDLE (19) with Q > 0. With the state feedback control policy
vt = Kzt , system, (A, B, AdC), can be rewritten as:

zt+1 = (A + BK )zt + ω(t)AdCKzt . (C.6)

Define the following Lyapunov function:

Lt (zt ) = E[z ′

tPzt ] > 0. (C.7)

Then, we have

Lt+1(zt+1) − Lt (zt )

= E
[(

(A + BK )zt + ω(t)AdCKzt
)′P

(
(A + BK )zt

+ ω(t)AdCKzt
)]

− E[z ′

tPzt ]

= E
[
z ′

t

(
−P + (A + BK )′P(A + BK )

+ σ 2K ′C ′(A′)dPAdCK
)
zt

]
= − E[z ′

tQzt ] < 0. (C.8)

By means of the Lyapunov stability theory, system, (A, B, AdC), is
stabilizable and the control policy vt = Kzt is stabilizing.

(a) ⇔ (b). It follows from Theorem 3 of [18], system, [A, B, C |d],
is stabilizable in the mean square sense if and only if the following
CRE:

Z = A′ZA + Q − A′ZBL−1B′ZA, (C.9)

X = Z +

d−1∑
i=0

(A′)i+1ZBL−1B′ZAi+1, (C.10)

has a unique positive definite solution Z > 0, where

L = B′ZB + σ 2C ′XC + R, Q > 0, R > 0. (C.11)

By (C.9), we obtain

−Z + A′ZA + Q = A′ZBL−1B′ZA ≥ 0. (C.12)

Applying (C.12) in (C.10) leads to

X = Z +

d−1∑
i=0

(A′)i(−Z + A′ZA + Q )Ai

= (A′)dZAd
+

d−1∑
i=0

(A′)iQAi. (C.13)

In this case, the parameter L in (C.11) can be rewritten as

L = R + B′ZB + σ 2C ′(A′)dZAdC

+ σ 2
d−1∑
i=0

C ′(A′)iQAiC, (C.14)

Therefore, the coupled Riccati equation (C.9)–(C.10) is equivalent
to the following GARE:

Z = A′ZA + Q − A′ZB
(
B′ZB + σ 2C ′(A′)dZAdC

+ σ 2
d−1∑
i=0

C ′(A′)iQAiC + R
)−1

B′ZA. (C.15)

On the other hand, for system, (A, B, AdC), consider the following
infinite horizon LQ optimization problem:

J(vt ) =

∞∑
t=0

E[z ′

tQzt + v′

tR0vt ], (C.16)

where Q > 0, R0 = σ 2 ∑d−1
i=0 B′(A′)iQAiB + R > 0. It follows

from [8], system, (A, B, AdC) is stabilizable in the mean square
sense if and only if the following GARE:

P = A′PA + Q − A′PB
(
R1 + B′PB

+ σ 2C ′(A′)dPAdC
)−1B′PA, (C.17)
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has a positive definite solution P > 0. When P = Z , it is evident
that the GARE (C.17) is equivalent to (C.15), which indicates that
the mean square stabilization of [A, B, C |d] is equivalent to that of
system (A, B, AdC).

(e) ⇔ (f ). Suppose that there exist matrices K and P >

0 satisfying (20). By utilizing Schur complement decomposition
in [20], we have

S =

⎡⎢⎣ −P ∗ ∗

A + BK −P−1
∗

σAdCK 0 −P−1

⎤⎥⎦ < 0, (C.18)

where ∗ represents the corresponding transpose part. Then, the
matrix transformation technique gives that

Λ =

⎡⎣P−1 0 0
0 I 0
0 0 I

⎤⎦ S

⎡⎣P−1 0 0
0 I 0
0 0 I

⎤⎦
=

⎡⎢⎣ −P−1
∗ ∗

AP−1
+ BKP−1

−P−1
∗

σAdCKP−1 0 −P−1

⎤⎥⎦ < 0, (C.19)

which is equivalent to (21) with S = P−1 > 0 and Y = KP−1.
Conversely, if there exist matrices Y and S > 0 satisfying (21), it is
easy to verify that (20) holds for P = S−1 > 0 and K = YS−1.
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