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Abstract—In this article, we propose a learning approach to
analyze dynamic systems with an asymmetric information struc-
ture. Instead of adopting a game-theoretic setting, we investigate
an online quadratic optimization problem driven by system noises
with unknown statistics. Due to information asymmetry, it is
infeasible to use the classic Kalman filter nor optimal con-
trol strategies for such systems. It is necessary and beneficial
to develop an admissible approach that learns the probability
statistics as time goes forward. Motivated by the online convex
optimization (OCO) theory, we introduce the notion of regret,
which is defined as the cumulative performance loss differ-
ence between the optimal offline-known statistics cost and the
optimal online-unknown statistics cost. By utilizing dynamic pro-
gramming and linear minimum mean square biased estimate
(LMMSUE), we propose a new type of online state-feedback
control policy and characterize the behavior of regret in a finite-
time regime. The regret is shown to be sublinear and bounded by
O(ln T). Moreover, we address an online optimization problem
with output-feedback control policy and propose a heuristic
online control policy.

Index Terms—Asymmetric information, learning-based con-
trol policy, linear minimum mean square unbiased estimation
(LMMSUE), online quadratic optimization, regret analysis.

I. INTRODUCTION

MANY previously reported works on dynamic systems
assume the classic information structure that postulates

all agents have equal access to the available system information.
Such a symmetric information structure is encountered in a host
of application scenarios, such as pursuit-evasion games [1], [2];
networked control systems [3]–[5]; multiagent systems [6], [7];
and seller-buyer supply chain models [8]. In different game
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Fig. 1. Movement trajectories of predator and prey.

settings, it is common to assume that the opposing parties
have peering information in regard to location, velocity, player
utility functions, and control policies. While such a symmet-
ric information assumption is satisfied in many applications,
from a general application perspective, it is of interest to
investigate models with an asymmetric information structure.
Moreover, early pioneering work in [9] and [10] has pointed out
the important role played by the information structure on the
decision and control strategy and, thus, offers theoretical moti-
vation to study systems with a nonclassic information structure.
There are a number of works analyzing models with asymmet-
ric information in dynamic games [11], [12]; pursuit-evasion
problem [13]; and economic theory [14].

In this article, we aim to analyze two-player systems in
which a single agent with rich input information, the predator,
is pitted against the other agent with limited input information,
the prey. The motivation of the model comes from applica-
tion scenarios that include pursuit-evasion and product pricing.
Below, we use two simple examples to illustrate the types of
online quadratic optimization we focus on in this article.

The first example is motivated by the pursuit-evasion model
in [15] and the Mission 7 of the International Aerial Robotics
Competition in [16], consisting of a single predator and a sin-
gle prey (a simple illustration of the dynamic game is depicted
in Fig. 1). It is assumed that the predator has access to loca-
tion information of both players and based on that, selects a
predation policy at each decision instant (e.g., whether bait
or camouflage is used). The prey has no access to location
information of the predator. Hence, it adopts a simple random-
ized evading policy for each predation policy. To be specific,
the dynamic of the predator and the prey is described as

xp(t + 1) = xp(t) + u(t) (1)
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xe(t + 1) = xe(t) + v(t) (2)

where xp(t) and xe(t) are the respective positions of the preda-
tor, and prey and u(t) is the predation policy. Assume the
evading policies are defined by nonzero-mean random vari-
ables, v(t)’s, which take value in an admissible bounded set
{v1, . . . , vM} with prob(v(t) = vi) = pi,

∑M
i=1 pi = 1. The

objective of the predator is to minimize both control cost and
distance, which is captured by the following quadratic index
function:

WT =
T∑

t=0

E
[∥
∥xe(t) − xp(t)

∥
∥2 + ‖u(t)‖2

]
. (3)

We emphasize that the evading policy distributions are a pri-
ori unknown to the predator, which leads to an asymmetric
information structure.

The second example is related to product pricing [17].
Consider a product pricing that is determined by a single pro-
ducer, which has absolute control over the pricing and the
producing rate. The market demand rate d(t) satisfies

d(t + 1) = ζ(t) − αp(t) ≥ 0, d(0) = d0 (4)

where α > 0 and p(t) is the pricing set by the producer. ζ(t)
is the positive utility value that satisfies

ζ(t) = b + e(t) (5)

where e(t)’s are independent and identically distributed (i.i.d.)
random variables with zero mean and unknown variance ve.
On the other hand, the production process is modeled by

z(t + 1) = z(t) + u(t) (6)

where z(t) is the production rate and u(t) is the rate control.
For a given optimization horizon of T periods, we define the
following objective function:

JT =
T∑

t=0

E
[
c1(z(t)−d(t))2+c2u2(t)−c3(p(t)−C)d(t + 1)

]

C > 0, ci > 0, i = 1, 2, 3. (7)

The first component in JT measures how the production pro-
cess tracks the demands, the second term is a measure of the
production rate changes, and the last component represents
the total profit assuming the demands are met. The objective
of the producer is to minimize JT via the control variables
(u(t), p(t)), which are assumed to be measurable with respect
to (w.r.t.) the σ -algebra Fz,d � {z(s), d(s), s = 0, 1, . . . , t}.

In the two simple examples above, we formulate the
problem as a quadratic optimization instead of a game the-
oretic setting. Due to its asymmetric nature, the probability
statistics of v(t) in (2) and e(t) in (5) are a priori unknown
to the predator and the producer, respectively. As a result,
it is infeasible to use the classic dynamic programming
approach [18] nor the maximum principle [19], which defines
a challenging task. It is necessary as well as beneficial to
develop an admissible approach that learns as time goes
forward.

The recent emergence of online convex optimization (OCO)
holds promises for solving optimization problems with the

asymmetric information structure [21]–[25]. The framework
of OCO was first defined in the machine-learning literature,
which is closely tied to the statistical learning theory and con-
vex optimization. A popular performance metric for online
algorithms is regret. In principle, the regret analysis aims to
study how far an online algorithm deviates from the opti-
mum [26]. An important property is that the regret of an
online algorithm grows at a sublinear rate, which means the
time average of the index function converges to the optimal
value as T approaches infinity. In [15], we reformulated the
first predator–prey model as a multiarmed bandit problem.
Although the proposed heuristic algorithm outperforms a ran-
dom decision policy, its regret is proved to be linear. In the
OCO framework, various cutting-edge online algorithms have
been proposed to attain the sublinear regret of O(

√
T), such as

the online gradient decent method [21], the stochastic gradient
decent method [22] and the online Newton step method [23].
In [24], when the cost function is strictly convex, the regret can
be improved to O(ln T). However, for the considered quadratic
optimization problem with an asymmetric information struc-
ture, how to derive an online strategy to ensure the sublinear
regret of O(ln T) is challenging and remains an open question,
which motivates us to undertake an in-depth study.

In this article, we focus on two-player systems in which the
players have asymmetric ability to information as motivated
by the above examples. Instead of adopting a game-theoretic
setting, we formulate the problem as an online quadratic
optimization driven by system noises with unknown statistics.
Our research methodology contains three powerful techniques,
namely, dynamic programming, linear minimum mean square
biased estimate (LMMSUE), and regret analysis.

Specifically, for the state-feedback case, if the mean and
variance of the system noises are known a priori, the optimal
offline control policy is derived based on the dynamic pro-
gramming approach. The optimal state feedback gains, inde-
pendent of the unknown statistics, are uniquely determined
by solving a standard Riccati equation. However, in the cur-
rent model, since the probability statistics of the system noises
are unknown, it is infeasible to apply the optimal offline con-
trol strategies. To address this, we introduce an admissible
approach that learns the probability statistics of the system
noises with the LMMSUE. Based on that, we propose a
learning-based optimal control policy. Moreover, under some
basic assumptions, the regret of the proposed online con-
trol policy grows at a sublinear rate, which is shown to be
bounded by O(ln T). Simulation results show the performance
of the developed control policy. On the other hand, we try to
address the online quadratic optimization problem with output
feedback control. Due to information asymmetry, the classic
Kalman filter cannot be applied directly. With the LMMSUE,
we propose a heuristic online control policy. The regret
between the online known statistics cost and the proposed
heuristic offline unknown statistics cost is sublinear, which
is shown to be bounded by O(ln T).

Notation: Let Rn denote the n-dimensional real Euclidean
space and R

m×n be the space formed by all m × n real
matrices with the usual 2-norm ‖ · ‖. The superscript ′ repre-
sents matrix transpose. Tr(A) represents the trace of a square
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matrix A and diag{a1 a2 · · · an} denotes a diagonal matrix.
A ≥ 0 (> 0) represents that A is a positive-semi definite
(positive-definite) matrix and A ≥ B (A > B) means that
A − B ≥ 0 (A − B > 0). {w(t), t = 0, 1, . . .} denotes a
sequence of real random variables defined on the complete
filtered probability space (�,F ,Ft) with F0 = {∅,�} and
Ft = σ {w(s)|s = 0, 1, 2, . . . , t}. Moreover, prob(A) denotes
the probability if the event A occurs.

II. STATE FEEDBACK CONTROL WITH LEARNING

A. Problem Formulation

Consider the following discrete time dynamic system:

x(t + 1) = Ax(t) + Bu(t) + w(t) (8)

where x(t) ∈ R
n is the state and u(t) ∈ R

m is the input control.
A and B are the known system parameters with the compatible
dimensions and x(0) = x0 ∈ R

n is the given initial state. We
assume that w(t)’s, are bounded and i.i.d. stochastic process
with

prob(w(t) = wi) = pi, i = 1, 2, . . . , M (9)

max
i

‖wi‖ ≤ wb < ∞. (10)

Define pw = [p1 p2 · · · pM]′, Pw = diag{p1 p2 · · · pM}, and
W = [w1 w2 · · · wM]. It follows that:

μw = E[w(t)] =
M∑

i=1

piwi = Wpw (11)

Qw = E
[
w(t)w(t)′

] =
M∑

i=1

piwiw
′
i = WPwW′. (12)

Generally, w(t) is nonzero mean, that is, μ �= 0. Moreover,
the covariance of w(t) is

Cw = E
[
(w(t) − μw)(w(t) − μw)′

] = Qw − μwμ′
w. (13)

Therefore, the probability statistic of w(t) depends on pw. We
emphasize that pw is a priori unknown to the decision maker,
which leads to the asymmetric information structure.

Without loss of generality, the index function is defined as
the general quadratic form

JT(u(t)) =
T∑

t=0

E
[
x′(t)Q(t)x(t) + u′(t)R(t)u(t)

]

+ E
[
x′(T + 1)PT+1x(T + 1)

]
(14)

where Q(t) ≥ 0, R(t) > 0, and PT+1 ≥ 0. The goal of the
decision maker is to minimize the index function (14) by an
online algorithm.

Assume that the probability pw is known a priori. The finite
horizon quadratic optimization problem (14) subject to (8) is
fairly standard, which can be solved by utilizing the classic
dynamic programming approach (see Theorem 1 hereinafter).
Unfortunately, in the current model, pw is unknown and the
optimal known statistics control strategies cannot be applied
directly for asymmetric information case. How to address this
unknown statistics problem?

Motivated by the OCO theory, we introduce the regret
function as follows:

RegT(u(t)) = JT(u(t)) − J∗
T . (15)

The regret measures the cumulative performance loss between
the optimal offline case with known statistics cost J∗

T and the
online case with unknown statistics cost JT(u(t)). Generally,
we say an online policy performs well if its regret is sub-
linear, that is, o(T), which implies the instantaneous online
performance can converge asymptotically to that of the offline
performance. Our goal in this article is to develop an admis-
sible approach to estimate the probability pw based on the
observed state trajectory and then propose a learning-based
control policy to reach a better sublinear regret, O(ln T).

Remark 1: In the first predator–prey model, if we set
x(t) = xp(t) − xe(t), the first example can be equivalently
reformulated as

minimize JT =
T∑

t=0

E
[
x′(t)x(t) + u′(t)u(t)

]

subject to x(t + 1) = x(t) + u(t) + w(t)

where w(t) = −v(t) takes value in an admissible bounded set
{−v1, . . . ,−vM} with prob(w(t) = −vi) = pi. In the second
product pricing example, if we set

v(t) = −p(t) + 1

2

(

C + b

α

)

, y(t) = d(t)

α
(16)

the objective function JT in (7) can be reformulated as

JT = J̄T +
T∑

t=0

E

[

bC − 1

4

(

C + ζ(t)

α

)2
]

(17)

where

J̄T =
T∑

t=0

E
[
c1(z(t) − αy(t))2 + c2u2(t) + c3αv2(t)

]
(18)

y(t + 1) = v(t) + w(t) (19)

z(t + 1) = z(t) + u(t) (20)

w(t) = e(t)

α
− 1

2

(

C − b

α

)

. (21)

In this case, the control variables (u(t), v(t)) are measur-
able w.r.t. the σ -algebra Fz,y generated by {z(s), y(s), s =
0, 1, . . . , t}. Since the difference between the two objective
functions JT and J̄T is independent of the control policy, the
original problem can be reduced to minimize J̄T . If we further
set X(t) = [y(t) z(t)]′, U(t) = [v(t) u(t)]′ and W(t) = [w(t) 0]′,
the optimization problem can be rewritten as

minimize J̄T =
T∑

t=0

E
[
X′(t)QX(t) + U′(t)RU(t)

]

subject to Z(t + 1) = AX(t) + BU(t) + W(t)

where

A =
[

0 0
0 1

]

, B =
[

1 0
0 1

]

Q = c1

[
α2 −α

−α 1

]

≥ 0, R =
[

c3 0
0 c2

]

> 0.
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Therefore, both examples are the special cases of the online
quadratic optimization problem with asymmetric information
structure.

Remark 2: In this article, we extend the classic quadratic
optimization model to involve asymmetric information nature,
with that, a traditional controller fails to guarantee the
performance when using the classic dynamic programming
approach nor the maximum principle. The main challenges of
the novel model include the so-called exploitation and explo-
ration dilemma. The recent emergence of machine-learning
techniques holds promises for solving such issues and the
performance of an online learning algorithm can be measured
by comparing its gains with those obtained like knowing the
inputs in hindsight. Thus, we adopt regret as the performance
metric for our algorithm, which has been commonly used in
the online learning context. Specifically, a sublinear regret of a
learning algorithm implies that the time average of the index
function is guaranteed to converge to the optimum as time
goes on.

B. Preparatory Results

To begin with, we derive the optimal control strategy
u∗(t) and the known statistics optimum J∗

T based on perfect
information of the probability pw.

Theorem 1: Suppose pw is known a priori. The optimal
offline control policy of the optimization problem (14) is

u∗(t) = −ϒT(t)−1(B′PT(t + 1)Ax(t) + B′PT(t + 1)μw

+B′LT(t + 1)μw
)

(22)

while the optimal offline index value of (14) is

J∗
T = x′

0PT(0)x0 + 2x′
0LT(0)μw +

T∑

t=0

HT(t) (23)

where ϒT(t), PT(t), LT(t), and HT(t) satisfy the following
iterative equations:

ϒT(t) = R(t) + B′PT(t + 1)B (24)

PT(t) = A′PT(t + 1)A + Q(t) − A′PT(t + 1)BϒT(t)−1

× B′PT(t + 1)A (25)

LT(t) =
(

A′ − A′PT(t + 1)BϒT(t)−1B′)

× (PT(t + 1) + LT(t + 1)) (26)

HT(t) = −μ′
w(PT(t + 1) + LT(t + 1))′BϒT(t)−1B′

× (PT(t + 1) + LT(t + 1))μw

+ 2μ′
wLT(t + 1)μw + Tr(PT(t + 1)Qw) (27)

with the terminal condition PT(T + 1) = PT+1 and
LT(T + 1) = 0.

Proof: See Appendix A.
Since the probability pw in the optimal offline control strat-

egy is unknown a priori, the exact values of μw and Qw

are unavailable. Moreover, the optimum J∗
T in Theorem 1 is

unavailable and can only be viewed as the optimal known
statistics (offline) cost.

Note that ϒT(t), PT(t), and LT(t) are independent of pw and
thus can be computed offline at the initial time. Therefore, the

information of ϒT(t +1), PT(t +1), and LT(t +1) is available
to the decision maker at time t.

If we set KP(t) = −ϒT(t)−1B′PT(t + 1)A, the iterative
Riccati (25) is reduced to

PT(t) = (A + BKP(t))′PT(t + 1)(A + BKP(t))

+ Q(t) + KP(t)′R(t)KP(t). (28)

Since Q(t) ≥ 0 and R(t) > 0, it follows from (28) that for
any terminal condition PT(T + 1) = PT+1 ≥ 0, PT(t) ≥ 0 is
unique and bounded. Denote

�T(t) = A′ − A′PT(t + 1)BϒT(t)−1B′. (29)

With the terminal condition LT(T + 1) = 0, the adjoint (26)
can be rewritten as

LT(t) =
T+1∑

i=t+1

⎛

⎝
i−1∏

j=t

�T(j)

⎞

⎠PT(i) (30)

which indicates that the adjoint parameter LT(t) is uniquely
determined by PT(s), s = t+1, . . . , T+1 and is thus bounded.

Next, we evaluate the cost value in (14) associated with any
available control policy.

Proposition 1: For any admissible control policy u(t), the
cost of the index function (14) is

JT(u(t)) = J∗
T +

T∑

t=0

E
(
(u(t) − u∗(t))′ϒT(t)(u(t) − u∗(t))

)

(31)

where u∗(t) and J∗
T are given in (22) and (23).

Proof: See Appendix B.
By Theorem 1 and Proposition 1, we have

J∗
T − JT(u(t)) =

T∑

t=0

E
[(

u(t) − u∗(t)
)′
ϒT(t)

(
u(t) − u∗(t)

)]
.

For any admissible control policy u(t), it follows from (15)
that the regret in this model can be rewritten as:

RegT(u(t)) =
T∑

t=0

E
[(

u(t) − u∗(t)
)′
ϒT(t)

(
u(t) − u∗(t)

)]
.

(32)

For each time t = 1, 2, . . . , T , and any admissible control
policy u(t), we define the one-step regret

regT(t, u(t)) = E
[(

u(t) − u∗(t)
)′
ϒT(t)

(
u(t) − u∗(t)

)]
. (33)

It follows that RegT(u(t)) = ∑T
t=0 regT(t, u(t)). The original

optimization problem (14) can be reduced to a minimization
of (32) with some admissible online control policy.

C. Learning-Based Control Policy and Regret Analysis

First, we focus on a simple but powerful learning tool of
estimating an unknown parameter in the statistical learning
theory, that is, LMMSUE.
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Denote p̂w(t) = [p̂1(t) p̂2(t) · · · p̂M(t)]′ to be the linear
unbiased estimate of the probability pw. With the initial esti-
mate p̂w(0) = [0 0 · · · 0]′, it follows from [15] that p̂w(t)
satisfies:

p̂w(t) =
t−1∑

i=0

ci(t)ξ(i), t = 1, 2, . . . , T (34)

where
∑t−1

i=0 ci(t) = 1 and ξ(i) is an i.i.d. stochastic process
with prob(ξ(i) = ξj) = pj, j = 1, 2, . . . , M, and

ξ1 = [1 0 · · · 0]′, . . . , ξM = [0 0 · · · 1]′.

Actually, ξ(t) defines the random observation that w(t) takes
the value of wi with the probability pi, i = 1, 2, . . . , M. In
this case, we obtain that

E[ξ(i)] = pw, E
[
ξ(i)ξ(i)′

] = Pw. (35)

With the linear unbiased estimate, we define the following
admissible control policy set by:

Uad �
{

u(t) = −ϒT(t)−1B′PT(t + 1)Ax(t) + lw(t)
}

(36)

where

lw(t) = −ϒT(t)−1B′(PT(t + 1) + B′LT(t + 1)
)
Wp̂w(t).

To begin with, we propose the LMMSUE p̂min(t) to minimize
E‖̂pw(t) − pw‖2.

Lemma 1 [15]: The linear minimum mean square unbiased
estimate of pw is

p̂min(t) = 1

t

t−1∑

i=0

ξ(i). (37)

Note that the LMMSUE is the sample mean of the random
observation ξ(t). It follows from (37) that:

p̂min(t + 1) = 1

t + 1
(t̂pmin(t) + ξ(t)). (38)

Utilizing the Kolmogorov strong law of large numbers [20],
we obtain

lim
t→∞ p̂min(t) = pw, a.s. (39)

where “a.s.” refers to “almost surely.”
Remark 3: In principle, at each time t = 1, 2, . . . , T , since

x(t), x(t − 1), and u(t − 1) are known to the decision maker,
it is feasible to reach w(t − 1) with

w(t − 1) = x(t) − Ax(t − 1) − Bu(t − 1). (40)

Observe that w(t−1) = wh(t−1), h(t−1) ∈ M � {1, 2, . . . , M}.
We update the LMMSUE p̂min(t) = (p̂1(t) p̂2(t) · · · p̂M(t))′
with

p̂i(t) =
{

(t−1)p̂i(t−1)+1
t , i = h(t − 1)

(t−1)p̂i(t−1)
t , i �= h(t − 1).

(41)

Define μ̂w(t) = Wp̂min. Then, we have

E[μ̂w(t)] = μw, E
[
(μ̂w(t) − μw)(μ̂w(t) − μw)′

] = 1

t
Cw.

In this case, μ̂w(t) is the LMMSUE of μw. Next, based on the
LMMSUE, we derive a learning-based Uad admissible control
policy that is optimal for the unknown statistics case.

Theorem 2: For the online quadratic optimization problem
with asymmetric information structure, the optimal online
control policy in Uad is designed as

û(t) = −ϒT(t)−1(B′PT(t + 1)Ax(t) + B′PT(t + 1)μ̂w(t)

+ B′LT(t + 1)μ̂w(t)
)

(42)

where p̂min(t) is the LMMSUE (37) and μ̂w(t) = Wp̂min.
Moreover, the optimal online index value in (14) is

JT
(
û(t)

) = J∗
T + Tr

(
DT(0)μwμ′

w

)+
T∑

t=1

1

t
Tr(DT(t)Cw)

(43)

where ϒT(t), PT(t), LT(t), and HT(t) satisfy the
iterative (24)–(27) and

DT(t) = (PT(t + 1) + LT(t + 1))′BϒT(t)−1B′

× (PT(t + 1) + LT(t + 1)) ≥ 0. (44)

Proof: See Appendix C.
To better understand the performance of the proposed online

policy, we need to carry out a detailed regret analysis. For
convenience, we state the following hypotheses:

H1: Q(t) = Q ≥ 0, R(t) = R > 0 and PT+1 = 0;
H2: (A, B) is stabilizable and (A, Q[1/2]) is observable.
Lemma 2: Suppose PT(t) is the unique positive-

semidefinite solution to the Riccati equation (25). Under
hypotheses H1 and H2, PT(t) is bounded and monotonically
nondecreasing as time decreases. Moreover, when t → −∞,
PT(t) converges to the unique solution P̂ > 0 to the following
algebraic Riccati equation (ARE):

P̂ = A′P̂A + Q − A′P̂B
(

R + B′P̂B
)−1

B′P̂A. (45)

Proof: See Appendix D.
Theorem 3: Under hypotheses H1 and H2, the regret

RegT(û(t)) satisfies

RegT

(
û(t)

) ≤ O(ln(T)). (46)

Proof: By Lemma 2, PT(t) is uniformly bounded by 0 ≤
PT(t) ≤ P̂, where P̂ is the unique positive-definite solution sat-
isfying the ARE (45). By (30), LT(t) is uniquely determined by
PT(s), s = t+1, . . . , T , and thus bounded. Moreover, by (44),
DT(t) ≥ 0 is determined by PT(s), s = t + 1, . . . , T and also
bounded. For DT(t) ≥ 0 and Cw ≥ 0, there exists a constant
ĉ > 0 such that

Tr(DT(t)Cw) ≤ ĉ. (47)

By Theorem 2, the regret satisfies

RegT(u(t)) ≤ Tr
(
DT(0)μμ′)+

T∑

t=1

1

t
ĉ

= Tr
(
DT(0)μμ′)+ ln(T + rT)ĉ (48)

where limT→∞ rT = r and r > 0 is the Euler constant. It
follows that RegT(u(t)) ≤ O(ln T).
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Assume that T > 0 is sufficiently large. Next, we ana-
lyze the efficiency of the proposed online control policy û(t)
compared with the other type of admissible control policies.

Case 1: Consider the following admissible control policy
based on the linear biased estimation defined as follows:

u1(t) = −ϒT(t)−1(B′PT(t+1)Ax(t)+B′

× (PT(t+1)+LT(t+1))μ̃w(t)), t=1, 2, . . . , T (49)

where μ̃w(t) = Wp̃(t), p̃(t) is a linear biased estimate, that is

p̃(t) =
t−1∑

i=0

c̃i(t)ξ(i), t = 1, 2, . . . , T. (50)

In this case, the one-step regret satisfies

regT(t, u1(t)) =
t−1∑

i=0

c̃2
i (t)Tr(DT(t)Cw)

+
(

t−1∑

i=0

c̃i(t) − 1

)2

Tr
(
DT(t)μwμ′

w

)
. (51)

The minimum regret value of (51) achieved at

c̃∗
i (t) = Tr

(
DT(t)μwμ′

w

)

Tr
(
tDT(t)μwμ′

w

)+ Tr(DT(t)Cw)
.

However, the exact values of μw and Cw are unknown to
the decision maker, it is infeasible to apply the proposed
LMMSUE.

Case 2: Suppose that the decision maker will terminate
updating the estimate after a critical time t̄, 1 ≤ t̄ < T . That
is to say, for 0 ≤ t ≤ t̄, u2(t) = û(t), and for t̄ < t ≤ T

u2(t) = −ϒT(t)−1(B′PT(t + 1)Ax(t) + B′PT(t + 1)μ̂w
(
t̄
)

+ B′LT(t + 1)μ̂w
(
t̄
))

. (52)

From the proof of Theorem 2, the regret satisfies

RegT(u2(t)) = Tr
(
DT(0)μwμ′

w

)+
t̄∑

t=1

1

t
Tr(DT(t)Cw)

+
T∑

t=t̄+1

1

t̄
Tr(DT(t)Cw)

which implies that RegT(û(t)) ≤ RegT(u2(t)). The online
control policy û(t) offers a better performance than u2(t).

Case 3: Consider the decision maker only utilizes the state-
feedback control policy u(t) = Kx(t). In this case, the optimal
feedback control policy is derived as

u3(t) = −ϒT(t)−1B′PT(t + 1)Ax(t). (53)

It follows that:

u3(t) − u∗(t) = ϒT(t)−1B′(PT(t + 1) + LT(t + 1))μw

and

regT(t, u3(t)) = Tr
(
DT(t)μwμ′

w

)
. (54)

If T > 0 is sufficiently large, there exists a critical time 1 ≤
tc < T such that

regT

(
t, û(t)

) ≤ regT(t, u3(t)), tc ≤ t ≤ T. (55)

Moreover, under hypotheses H1 and H2, the regret of u3(t)
is shown to be linear, which indicates that our policy û(t) in
Theorem 2 offers a better performance than u3(t).

Remark 4: In the machine-learning area, various learn-
ing algorithms, which can be either model based or model
free with different application scenarios, have been proposed
to solve the quadratic optimization problem with unknown
statistics. Typical policies dealing with the asymmetric
information dilemma in the online quadratic optimization
problem include adaptive dynamic programming (ADP),
optimism-in-face-of-uncertainty (OFU), and Thompson sam-
pling (TS). Specifically, [27] gave an OFU-based algorithm
that suffers a O(

√
T) regret for continuous-time dynamics with

quadratic cost. This result is better than the O(T2/3) regret
developed in [28] by utilizing TS. Then, an improved TS
algorithm was proposed in [29], whose regret is shown to be
cumulatively bounded as O(

√
T). Moreover, ADP has been

applied to handle the model-free case with unknown linear or
nonlinear dynamics [30]–[32]. It was proved in [31] that the
convergence of the developed algorithm is equivalent to the
classic Newton step method [23]. However, these results were
obtained for zero-mean random variables, which appear to be
decreasingly effective in the first predator–prey model with
E[v(t)] �= 0. Compared with these results, our innovative con-
tributions are two-fold: 1) different from [27]–[29], our model
involves a more general nonzero noise and 2) without know-
ing the statistics of the noise, we developed a novel strategy,
called LMMSUE, which guarantees a much better regret of
O(ln T) than existing policies as TS etc.

Besides, we remark that the alterative (41) of the LMMSUE
is simple and thus the developed method has low computa-
tional complexity.

Remark 5: Note that our proposed strategy relies on the
exact information of system matrices and a linear dependency
on the dimension of the system matrices or noise vector is
attainable. As a result, the proposed method maintains good
performance with massive unknown parameters in a complex
industrial system. Despite of the above fact, we highlight that
it is a promising research direction to develop more effective
learning policies tailored for complex systems and attain a
better dimension dependency.

III. OUTPUT FEEDBACK CONTROL WITH LEARNING

A. Problem Formulation

Consider the following discrete time dynamic system:

x(t + 1) = Ax(t) + Bu(t) + w(t) (56)

y(t) = Cx(t) + v(t) (57)

where y(t) ∈ R
n is the measurement and C ∈ R

n×n is nonsin-
gular with the compatible dimension. The initial state x0 ∈ R

n

is a Gaussian random vector with

μ0 = E[x0], C0 = E
[
(x0 − μ0)(x0 − μ0)

′]. (58)

The measurement noise v(t) is assumed to be a bounded and
i.i.d. stochastic process [33] with

max
t

‖v(t)‖ ≤ vb < ∞ (59)

0 = E[v(t)], Qv = E
[
v(t)v(t)′

]
. (60)
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We assume that w(t)’s are bounded and form an i.i.d. stochastic
process satisfying (9) and (10). The random variables x0, w(t),
and v(t) are assumed to be mutually independent. Moreover,
we emphasize that the probability pw is a priori unknown to
the decision maker. The objective is to minimize the index
function (14) with asymmetric information structure.

Generally speaking, to solve the quadratic optimization
problem (14) subject to (56) and (57), one could apply the
well known Kalman filter to estimate the value of the state
x(t) and based on that design the optimal offline control pol-
icy to minimize the index function. To be specific, denote
Y(t) to be the observation set {y(0), y(0), . . . , y(t)}. Define
x̂t|t−1 = E[x(t)|Y(t − 1)], x̂t|t = E[x(t)|Y(t)], and

�t|t−1 = E
[(

x(t) − x̂t|t−1
)(

x(t) − x̂t|t−1
)′|Y(t − 1)

]
(61)

�t|t = E
[(

x(t) − x̂t|t
)(

x(t) − x̂t|t
)′|Y(t)

]
(62)

where E[x|Y] defines the conditional expectation of the ran-
dom variable x w.r.t. Y . Applying the standard Kalman
filtering [34] yields that

x̂t|t = x̂t|t−1 + �t|t−1C′(C�t|t−1C′ + Qv
)−1(

y(t) − Cx̂t|t−1
)

(63)

x̂t+1|t = Ax̂t|t + Bu(t) + μw (64)

where

�t|t = �t|t−1 − �t|t−1C′(C�t|t−1C′ + Qv
)−1

C�t|t−1

�t+1|t = A�t|tA′ + Cw. (65)

The initial conditions are

x̂0|−1 = E[x0] = μ0, �0|−1 = E
[
(x0 − μ0)(x0 − μ0)

′].
(66)

By utilizing the classic separation principle, the optimal offline
control policy is

u∗(t) = −ϒT(t)−1(B′PT(t + 1)Ax̂t|t + B′PT(t + 1)μw

+ B′LT(t + 1)μw
)
. (67)

However, in the current model, since the exact values of
μw and Cw are unknown, the classic Kalman filter and the
optimal offline control strategy cannot be applied for the asym-
metric information case. Instead, we introduce an one-step
state estimation based on the observation y(t) at each time
t = 1, 2, . . . , T and then the original problem is reduced
to a quadratic optimization problem with a nonwhite system
noise [35]. This modified optimization problem is challeng-
ing. In this study, we propose a suboptimal offline control
policy conditioned on the assumption that the one-step state
estimation is applied and the probability statistics of the system
are known. Based on the LMMSUE, we propose a learning-
based online control policy. The quasiregret between the online
known statistics cost and the heuristic offline unknown statis-
tics suboptimal cost is shown to be to be sublinear and
bounded by O(ln T).

B. Learning-Based Control Policy and Regret Analysis

With the output dynamic (57), we introduce a simple one-
step state estimate

x̂(t) = E
[
x(t)|y(t)] = C−1y(t), t = 0, 1, . . . , T (68)

which implies that

x̂(t + 1) = Ax̂(t) + Bu(t) + s(t) (69)

s(t) = w(t) − AC−1v(t) + C−1v(t + 1). (70)

In this case, s(t) is a colored noise with μs = E[s(t)] = μw

Qs = E
[
s(t)s′(t)

] = Qw + C−1QvC−1 + AC−1QvC−1A′.

Moreover, the error covariance is

�(t) = E
[(

x(t) − x̂(t)
)(

x(t) − x̂(t)
)′] = C−1QvC−1.

The index function (14) can be rewritten as

JT(u(t)) =
T∑

t=0

E
[
x̂′(t)Q(t)x̂(t) + u′(t)R(t)u(t)

]

+ E
[
x̂′(T + 1)PT+1x̂(T + 1)

]− DT (71)

where

DT =
T∑

t=0

Tr
(
Q(t)Q̄v

)+ Tr
(
PT+1Q̄v

)
(72)

Q̄v = C−1QvC−1. (73)

The original quadratic optimization problem (14) is reduced
to minimizing (71) w.r.t. (69), (70). By utilizing the one-step
state estimate, we derive a heuristic suboptimal offline result.

Theorem 4: Assume that the probability pw is known a
priori. A suboptimal offline control policy of the quadratic
optimization problem (14) is given by

ua(t) = −ϒT(t)−1(B′PT(t + 1)Ax̂(t) + B′PT(t + 1)μw

+ B′LT(t + 1)μw
)

(74)

while the index value of (14) is

JT(ua(t)) = x̂′(0)PT(t)x̂(0) + 2x̂′(0)LT(0)μw + HT (75)

where ϒT(t), PT(t), and LT(t) satisfy (24)–(26) and

HT =
T∑

t=0

{
−μ′

w(PT(t + 1) + LT(t + 1))′BϒT(t)−1B′

×(PT(t + 1) + LT(t + 1))μw + 2μ′
wLT(t + 1)μw

+ Tr
(

A′PT(t + 1)BϒT(t)−1B′PT(t + 1)AQ̄v

)

+ Tr(PT(t + 1)Qw)
}

− Tr
(
PT(0)Q̄v

)
. (76)

Proof: See Appendix E.
Next, we study the LMMSUE of pw. Due to the presence of

the measurement noise v(t), at each time t = 1, 2, . . . , T , it is
difficult to reach the exact value of w(t − 1). To guarantee the
exact observation of w(t−1), we state the following hypothesis

H3: For each i, j = 1, 2, . . . , M and i �= j

∥
∥wi − wj

∥
∥ >

2(1 + ‖A‖)vb

‖C‖ . (77)
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At each time t = 1, 2, . . . , T , define ŵ(t−1) = x̂(t)−Ax̂(t−
1) − Bu(t − 1). It follows that:

∥
∥ŵ(t − 1) − w(t − 1)

∥
∥ =

∥
∥
∥C−1v(t) − AC−1v(t − 1)

∥
∥
∥

≤ (1 + ‖A‖)vb

‖C‖ . (78)

Suppose that w(t − 1) = wh(t−1). For i �= h(t − 1), we obtain

2(1 + ‖A‖)vb

‖C‖ < ‖wi − wh‖
≤ ∥
∥wi − ŵ(t − 1)

∥
∥+ ∥

∥wh − ŵ(t − 1)
∥
∥

≤ ∥
∥wi − ŵ(t − 1)

∥
∥+ (1 + ‖A‖)vb

‖C‖
which implies that

∥
∥ŵ(t − 1) − wi

∥
∥ >

(1 + ‖A‖)vb

‖C‖ ≥ ∥
∥ŵ(t − 1) − wh

∥
∥. (79)

Therefore, at each time t = 0, 1, . . . , T − 1, we have w(t) =
wh(t), where h(t) is determined by

h(t) = arg min
i=1,...,M

∥
∥ŵ(t) − wi

∥
∥. (80)

By Remark 3, we have ξ(t) = ξh(t) and update p̂min(t + 1) =
[p̂1(t + 1) p̂2(t + 1) · · · p̂M(t + 1)]′ with

p̂i(t + 1) =
{

tp̂i(t)+1
t+1 , i = h(t)

tp̂i(t)
t+1 , i �= h(t).

(81)

Based on the LMMSUE, we are in a position to present a
learning-based online control policy as follows.

Theorem 5: Suppose the probability pw is unknown. Under
hypothesis H3, an admissible online control policy is

ûa(t) = −ϒT(t)−1(B′PT(t + 1)Ax̂(t) + B′PT(t + 1)μ̂w(t)

+B′LT(t + 1)μ̂w(t)
)

(82)

while the index value in (14) is

JT
(
ûa(t)

) = x̂′(0)PT(t)x̂(0) + 2x̂′(0)LT(0)μw + HT

+ Tr
(
DT(0)μwμ′

w

)+
T∑

t=1

1

t
Tr(DT(t)Cw) (83)

where ϒT(t), PT(t), and LT(t) satisfy (24) and (25), DT(t) sat-
isfies (44), and HT satisfies (76). Moreover, under hypotheses
H1)-H2), the quasiregret between the online cost JT(ûa(t)) and
the offline cost JT(ua(t)) satisfies

R̄egT
(
ûa(t)

) ≤ O(ln T). (84)

Proof: See Appendix F.

IV. ILLUSTRATIVE EXAMPLES

In this section, we present two numerical examples to
illustrate the effectiveness of our theoretical results.

Example 1: Consider the predator–prey model in (1)–(3).
For convenience, we simply set β = 1 and R

n = R
2. Assume

the initial positions are xp = [1 0]′ and xe = [0 0]′. The prey
has the following four evading policies:

v1 = [1 0]′, v2 = [−1 0]′, v3 = [0 1]′, v4 = [0 − 1]′

Fig. 2. Trajectories of one-step regret.

with the evading probability distribution

pv = [0.2 0.1 0.6 0.1]′.

In this case, we obtain

μv =
[

0.1
0.5

]

, Qv =
[

0.3 0
0 0.7

]

.

If we set x(t) = xp(t) − xe(t) and T = 200, the first
predator–prey problem in (1)–(3) can be reformulated as the
state-feedback case (14) with

A1 = B1 =
[

1 0
0 1

]

, Q1 = R1 =
[

1 0
0 1

]

, x(0) =
[

1
0

]

.

It follows that (A1, B1) is stabilizable and (A1, Q(1/2)

1 is
observable. Suppose the evading probability distribution pv is
known to the predator. By Theorem 1, we obtain the optimal
offline control policy u∗(t) in (22) which minimizes the index
function (14) with J∗

T = 292.1660.
By utilizing the proposed admissible control policy û(t)

in (42) with the LMMSUE p̂min(t), we obtain the index cost
with JT(û(t)) = 304.2107. Thus, the regret is

RegT

(
û(t)

) = JT
(
û(t)

)− J∗
T = 12.0446.

We propose the trajectories of the one-step regret regT(û(t))
as shown in Fig. 2, where regT(û(T)) = 0 due to the terminal
conditions PT+1 = LT+1 = 0.

Define the regret percentage to be

cT
(
û(t)

) = RegT

(
û(t)

)

T
× 100%. (85)

For different terminal time T > 0, the optimal offline index
value J∗

T , the optimal online index value JT(û(t)), the regret
RegT(û(t)), and the percentage cT(û(t)) can be summarized
in Table I. It can be concluded that the regret of the proposed
online control policy grows at a sublinear rate.

Moreover, to illustrate the effectiveness of our theoreti-
cal results, we introduce the Gittins Index-based algorithm
to solve the predator–prey model numerically (see the detail
in [15, Fig. 2]). The starting point of this benchmark algo-
rithm is to minimize an one-step utility function for each time
t ∈ [1, T] as a surrogate cost function, which provides an
upper bound of the index function. As shown in Table II,
the developed learning-based control policy in Theorem 2
outperforms the Gittins index-based algorithm.
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TABLE I
REGRET ANALYSIS IN EXAMPLE 1

TABLE II
REGRET OF LEARNING-BASED POLICY û AND

GITTINS INDEX-BASED POLICY ũ

Example 2: Consider the modified product pricing model
in (19) and (20). We assume that α = (1/4), b = 2, and e(t)’s
are bounded and i.i.d. stochastic process with

e1 = 0, e2 = 0.1, e3 = −0.1, e4 = 0.2, e5 = −0.2

e6 = 0.3, e7 = −0.3, e8 = 0.4, e9 = −0.4.

The probability distribution pe is assume to be

pe = [0.25 0.15 0.15 0.1 0.1 0.075 0.075 0.05 0.05]′.

Moreover, we assume that c1 = c2 = c3 = 1.
If we set X(t) = [y(t) z(t)]′, U(t) = [v(t) u(t)]′, and

W(t) = [w(t) 0]′, the second product pricing problem can
be reformulated as the state-feedback case (14) with

A2 =
[

0 0
0 1

]

, B2 =
[

1 0
0 1

]

Q2 =
[ 1

16 − 1
4− 1

4 1

]

≥ 0, R2 =
[

1 0
0 1

]

> 0.

It follows that (A2, B2) is stabilizable and (A2, Q[1/2]
2 ) is

observable. Moreover, since w(t) = [e(t)/α] − (1/2)(C −
[b/α]), the probability statistics of W(t) = [w(t) 0]′ is

μW =
[

3.6
0

]

, QW =
[

13.6080 0
0 0

]

.

Assume X(0) = [1 1]′. For different terminal time T > 0,
it follows from Theorems 1–3 that the optimal index value
J̄∗

T , the index value J̄T(û(t)), the regret RegT(û(t)), and the
percentage cT(û(t)) can be summarized in Table III, where
the regret of the proposed online control policy grows at a
sublinear rate.

Example 3: Consider the output-feedback control model
in (56) and (57) where A3 = 1.2, B3 = 2.75, C3 = 1, Q3 =
0.5, and R3 = 0.78. Assume that w(t)’s are bounded and i.i.d.
stochastic process with

w1 = 0, w2 = 0.3, w3 = 0.5, w4 = 0.7, w5 = 0.9

pw = [0.1 0.2 0.4 0.2 0.1]′.

TABLE III
REGRET ANALYSIS IN EXAMPLE II

TABLE IV
REGRET ANALYSIS IN EXAMPLE II

It follows that:

μw = E[w(t)] =
5∑

i=1

piwi = 0.49

Qw = E
[
w(t)w(t)′

] =
5∑

i=1

piwiw
′
i = 0.297.

Moreover, the measurement noise v(t) is assumed to satisfy

0 = E[v(t)], Qv = E
[
v(t)v(t)′

] = 1.25.

For different terminal time T > 0 and a given initial state x0 =
0.35, it follows from Theorems 4 and 5 that the quasiregret
R̄egT(ûa(t)) between the online cost JT(ûa(t)) and the offline
cost JT(ua(t)) is summarized in Table IV.

V. CONCLUSION

In this article, we focused on an online quadratic
optimization problem with an asymmetric information struc-
ture. We assumed that a single predator with rich information
input is pitted against a single prey with limited input
information. Motivated by the OCO methodology, we
developed an admissible approach that enables the predictor-
agent learn the probability statistics of the system with the
LMMSUE. Based on that, we proposed a learning-based
optimal online control policy. Its regret grows at a sublinear
rate, and is shown to be bounded by O(ln T), which implies
the online performance can converge asymptotically to that of
the offline optimal performance.

As future work, there are two promising research directions.
The first research direction is to figure out more optimal online
control strategies and analysis framework for the existing
online quadratic optimization problems. The other direction
is to extend the two-player models to more complicated mod-
els, such as multiagent systems. With unknown statistics of
multiplicative noise or network topology, it is infeasible to
utilize the classic distributed control strategies. The online
optimization approach can offer a promising but challenging
new direction.
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APPENDIX A
PROOF OF THEOREM 1

Proof: The proof is based on the dynamic programming
approach. For each time t = 0, 1, . . . , T , define the following
cost-to-go function:

G(t) = min
u(t)

G(t) (86)

where

G(t) = E
[
x′(t)Q(t)x(t) + u′(t)R(t)u(t) + G(t + 1)

]
(87)

and

G(T + 1) = E
[
x′(T + 1)PT+1x(T + 1)

]
. (88)

Next, we show that

G(t) = E
[
x′(t)PT(t)x(t) + 2x′(t)LT(t)μw

]+
T∑

j=t

HT(j) (89)

where PT(t), LT(t), and HT(t) satisfy (25)–(27).
For t = T , it follows from (87) that:

G(T) = E
[
x′(T)Q(T)x(T)+u′(T)R(T)u(T)

+(Ax(T)+ Bu(T)+w(T))′PT+1

× (Ax(T)+Bu(T)+w(T))
]

= E
[(

u(T)+ϒT(T)−1(B′PT+1Ax(T)+B′PT+1μw
))′

×ϒT(T)
(

u(T)+ϒT(T)−1

× (
B′PT+1Ax(T)+B′PT+1μw

))

− (
B′PT+1Ax(T)+B′PT+1μw

)′
ϒT(T)−1

× (
B′PT+1Ax(T)+B′PT+1μw

)+x′(T)

× (
Q(T)+A′PT+1A

)
x(T)+2x′(T)A′PT+1μw

]

+ Tr(PT+1Qw)

where ϒT(T) = R(T) + B′PT+1B. At time T , the optimal
control policy u∗(T) is

u∗(T) = −ϒT(T)−1(B′PT+1Ax(T) + B′PT+1μw
)

(90)

while the cost-to-go function G(T) satisfies

G(T) = min
u(T)

G(T)

= E
[
x′(T)

(
Q(T)+A′PT+1A−A′PT+1BϒT(T)−1B′PT+1A

)

× x(T)+2x′(T)
(

A′−A′PT+1BϒT(T)−1B′)

× PT+1μw

]
−μ′

wPT+1BϒT(T)−1B′PT+1μw

+ Tr(PT+1Qw)

= E
[
x′(T)PT(T)x(T)+2x′(T)LT(T)μw

]+HT(T)

where PT(T), LT(T), and HT(T) satisfy (25)–(27) with t = T .
For each t = 0, 1, . . . , T − 1, suppose

G(t + 1) = E
[
x′(t + 1)PT(t + 1)x(t + 1)

+ 2x′(t + 1)LT(t + 1)μw
]+

T∑

j=t+1

HT(j).

It follows that:

G(t) = E
[
x′(t)Q(t)x(t) + u′(t)R(t)u(t) + x′(t + 1)PT(t + 1)

× x(t + 1) + 2x′(t + 1)LT(t + 1)μw
]+

T∑

j=t+1

HT(j)

= E
[(

u(t) + ϒT(t)−1(B′PT(t + 1)Ax(T)

+ B′(PT(t + 1) + LT(t + 1))μw
))′

× ϒT(t)
(

u(t) + ϒT(t)−1

× (
B′PT(t + 1)Ax(t)

+ B′(PT(t + 1) + LT(t + 1))μw
))

− (
B′PT(t + 1)Ax(t) + B′(PT(t + 1) + LT(t + 1))μw

)′

× ϒT(t)−1(B′PT(t + 1)Ax(t)

+ B′(PT(t + 1) + LT(t + 1))μw
)

+ x′(t)
(
Q(t) + A′PT(t + 1)A

)
x(t)

+ 2x′(t)A′PT(t + 1)μw + 2x′(t)A′LT(t + 1)μw
]

+ 2μ′
wLT(t + 1)μw

+ Tr(PT(t + 1)Qw) +
T∑

j=t+1

HT(j).

Then, the optimal control policy is u∗(t) in (22), which implies
that

G(t) = min
u(t)

G(t)

= E
[
x′(t)

(
Q(t) + A′PT(t + 1)A − A′PT(t + 1)BϒT(t)−1

× B′PT(t + 1)A
)

x(t)

+ 2x′(t)
(

A′ − A′PT(t + 1)BϒT(t)−1B′)

× (PT(t + 1) + LT(t + 1))μw]

−μ′
w(PT(t + 1) + LT(t + 1))′BϒT(t)−1

× B′(PT(t + 1) + LT(t + 1))μw + 2μ′LT(t + 1)μw

+Tr(PT(t + 1)Qw) +
T∑

j=t+1

HT(j)

= E
[
x′(t)PT(t)x(t) + 2x′(t)LT(t)μw

]+
T∑

j=t

HT(j).

Utilize the dynamic programming with the cost-to-go func-
tion (86) yields the optimal index value satisfies (23), which
completes this proof.

APPENDIX B
PROOF OF PROPOSITION 1

Proof: For each time t = 0, 1, . . . , T , define the following
Lyapunov function:

V(t) = E
[
x′(t)PT(t)x(t) + 2x′(t)LT(t)μw

]+
T∑

i=t

HT(i).
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It follows that:

V(t) − V(t + 1)

= E
[
x′(t)PT(t)x(t) + 2x′(t)LT(t)μw

]+
T∑

i=t

HT(i)

− E
[
(Ax(t) + Bu(t) + w(t))′PT(t + 1)

× (Ax(t) + Bu(t) + w(t))

+ 2(Ax(t) + Bu(t) + w(t))′LT(t + 1)μw
]

−
T∑

i=t+1

HT(i)

= E
[
x′(t)Q(t)x(t) + u′(t)R(t)u(t)

]

− E
[
(u(t) − u∗(t))′ϒT(t)(u(t) − u∗(t))

]

which implies that

V(0) − V(T + 1) =
T∑

t=0

V(t) − V(t + 1)

= x′
0PT(0)x0 + 2x′

0LT(0)μ +
T∑

t=0

HT(t)

− E
[
x′(T + 1)PT(T + 1)x(T + 1)

]

=
T∑

t=0

E
[
x′(t)Q(t)x(t) + u′(t)R(t)u(t)

]−
T∑

t=0

× E
[(

u(t) − u∗(t)
)′
ϒT(t)

(
u(t) − u∗(t)

)]
.

In this case, we obtain

JT(u(t)) = x′
0PT(0)x0 + 2x′

0LT(0)μ +
T∑

t=0

HT(t)

+
T∑

t=0

E
[(

u(t) − u∗(t)
)′
ϒT(t)

(
u(t) − u∗(t)

)]

which completes this proof.

APPENDIX C
PROOF OF THEOREM 2

Proof: By Proposition 1, we first show that the regret for
the developed control policy û(t) satisfies

RegT(û(t)) = Tr
(
DT(0)μwμ′

w

)+
T∑

t=1

1

t
Tr(DT(t)Cw). (91)

For t0 = 0, the decision maker has no observation. With the
initial estimate p̂min(0) = [0 0 · · · 0]′, the control policy is
designed to be

û(0) = −ϒT(0)−1B′PT(1)Ax(0) (92)

which is the feedback of the initial state x(0) = x0. In this
case, we have

û(0) − u∗(0) = ϒT(0)−1B′(PT(1) + LT(1))μw (93)

which implies that

regT

(
0, û(0)

) = E
[(

û(0) − u∗(0)
)′
ϒT(0)

(
û(0) − u∗(0)

)]

= Tr
(
DT(0)μwμ′

w

)
(94)

where DT(t) ≥ 0 is given in (44). For each time t =
1, 2, . . . , T , the decision maker observes the exact value of
ξ(i), i = 0, 1, . . . , t − 1. In this case, we obtain

û(t) − u∗(t)
= −ϒT(t)−1B′(PT(t + 1) + LT(t + 1))

(
μ̂w(t) − μw

)

which implies that

regT

(
t, û(t)

) = E
[(

μ̂w(t) − μw
)′DT(t)(μ̂w(t) − μw)

]

= 1

t
Tr(DT(t)Cw). (95)

With the updated estimate p̂min(t) and the control policy û(t),
the regret satisfies (91). It follows from Proposition 1 that the
index value in (14) is:

JT
(
û(t)

) = x′
0PT(0)x0 + 2x′

0LT(0)μw +
T∑

t=0

HT(t)

+ Tr
(
DT(0)μwμ′

w

)+
T∑

t=1

1

t
Tr(DT(t)Cw).

For each online control policy u1(t) ∈ Uad satisfying

u1(t) = −ϒT(t)−1(B′PT(t + 1)Ax(t) + B′

× (PT(t + 1) + LT(t + 1))μ̌w(t)
)

t = 1, 2, . . . , T (96)

where μ̌w(t) = Wp̌(t) and p̌(t) is a linear unbiased estimate
satisfying

p̌(t) =
t−1∑

i=0

či(t)ξ(i), t = 1, 2, . . . , T

with či(t) �= (1/t), i = 0, 1, . . . , t − 1, and
∑t−1

i=0 či(t) = 1. In
this case, the regret of u1(t) satisfies

RegT(u1(t)) =
T∑

t=0

E
[(

u1(t) − u∗(t)
)′
ϒT(t)

(
u1(t) − u∗(t)

)]

= Tr
(
DT(0)μwμ′

w

)+
T∑

t=1

t−1∑

i=0

č2
i (t)Tr(DT(t)Cw).

Define

f
(
č
) =

t−1∑

i=0

č2
i (t). (97)

Applying č0(t) = 1 −∑t−1
i=1 či(t) to (97), we obtain

f
(
č
) =

t−1∑

i=1

č2
i (t) +

(

1 −
t−1∑

i=1

či(t)

)2

. (98)

For each j = 1, 2, . . . , t − 1, we have

fčj(t)
(
č
) = 2

(

čj(t) +
t−1∑

i=1

či(t) − 1

)

. (99)

Suppose fčj(t)(č) = 0 holds, we have the minimum point is
či(t) = (1/t), i = 0, 1, . . . , t − 1. It follows that:

RegT

(
û(t)

) ≤ RegT(u1(t))
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which yields that the online control policy û(t) serves as a
better performer than u1(t).

APPENDIX D
PROOF OF LEMMA 2

Proof: Consider the following quadratic optimization
problem:

minimize WT =
T∑

t=0

z′(t)Qz(t) + v′(t)Rv(t)

subject to z(t + 1) = Az(t) + Bv(t). (100)

It follows from Theorem 1 with w(t) = 0 that the optimal
index value of (100) is:

W∗
T = z(0)′PT(0)z(0). (101)

Due to the time invariance of the Riccati equation (25), for
any 0 ≤ t ≤ T , we have PT(t) = PT−t(0). For any z(0) and
0 ≤ t1 < t2 ≤ T , it follows that:

z(0)′PT(t1)z(0) = W∗
T−t1 ≥ W∗

T−t2 = z(0)′PT(t2)z(0)

which indicates that PT(t1) ≥ PT(t2). Since (A, B) is stabi-
lizable, there exists a stabilizing control policy vs(t) = Ksz(t)
such that limt→∞ ‖zs(t)‖2 = 0 and

∞∑

t=0

‖zs(t)‖2 ≤ c1‖z(0)‖2.

In this case, we have

z(0)′PT(t)z(0) = W∗
T−t ≤

T−t∑

i=0

z′(i)Qz(i) + v′
s(i)Rvs(i)

≤
∞∑

t=0

z′(t)Qz(t) + v′
s(t)Rvs(t)

≤
∞∑

t=0

z′(t)
(
Q + K′

sRKs
)
z(t)

≤ c‖z(0)‖2

where c = λmax(Q + K′
sRKs)c1. Thus, PT(t) is bounded.

Moreover, we have

lim
t→−∞ PT(t) = lim

T→∞ PT(0) = P̂

where P̂ satisfies the ARE (45). Moreover, since (A, B) is sta-
bilizable and (A, Q

1
2 ) is observable, it follows from [36, Th.

1] that the ARE (45) has a unique positive-definite solution
P̂ > 0. The proof is completed.

APPENDIX E
PROOF OF THEOREM 4

Proof: Since DT is independent with the control policy u(t),
we only need to consider the following optimization problem:

minimize J1(u(t)) =
T∑

t=0

E
[
x̂′(t)Q(t)x̂(t) + u′(t)R(t)u(t)

]

+ E
[
x̂′(T + 1)PT+1x̂(T + 1)

]

subject to x̂(t + 1) = Ax̂(t) + Bu(t) + s(t). (102)

For each time t = 0, 1, . . . , T , define G(t) = G(t, ua(t)) with

G(t, u(t)) = E
[
x̂′(t)Q(t)x̂(t) + u′(t)R(t)u(t) + G(t + 1)

]
.

The terminal condition is given as

G(T + 1) = E
[
x̂′(T + 1)PT+1x̂(T + 1)

]
. (103)

Next, we show that

G(t) = E
[
x̂′(t)PT(t)x̂(t) + 2x̂′(t)LT(t)μw

]+
T∑

i=t

M(i)

where

M(t) = −μ′
w(PT(t + 1) + LT(t + 1))′BϒT(t)−1B′

× (PT(t + 1) + LT(t + 1))μw + 2μ′
wLT(t + 1)μw

+ 2Tr
(

A′PT(t + 1)BϒT(t)−1B′PT(t + 1)AQ̄v

)

+ Tr(PT(t + 1)Qw) + Tr
(
PT(t + 1)Q̄v

)

− Tr
(
A′PT(t + 1)AQ̄v

)
. (104)

For each time t = 0, 1, . . . , T , it follows that:

G(t, u(t)) = E
[
x̂′(t)Q(t)x̂(t)+u′(t)R(t)u(t)

+ (
Ax̂(t)+Bu(t)+s(t)

)′
PT(t+1)

× (
Ax̂(t)+Bu(t)+s(t)

)

+ 2
(
Ax̂(t)+Bu(t)+s(t)

)′
LT(t+1)μw

]

+
T∑

i=t+1

M(i)

= E
[(

u(t)+ϒT(t)−1h
(
B′Pt+1Ax̂(t)+B′PT(t+1)μw

+ B′LT(t+1)μw
))′

× ϒT(t)
(

u(t)+ϒT(t)−1

× (
B′PT(t+1)Ax̂(t)

+ B′(PT(t+1)+LT(t+1))μw
))

− (
B′PT(t+1)Ax̂(t)

+ B′(PT(t+1)+LT(t+1))μw
)′

× ϒT(t)−1(B′PT(t+1)Ax̂(t)+B′PT(t+1)μw

+ B′LT(t+1)μw
)

+ x̂′(t)
(
Q+A′PT(t+1)A

)
x̂(t)

+ 2x̂′(T)A′PT(t+1)μw+2x̂′(t)A′LT(t+1)μw

− 2u′(T)B′PT(t+1)AC−1v(t)
]

+ 2μ′
wLT(t+1)μw

+ Tr(PT(t+1)Qw)+Tr
(
PT(t+1)Q̄v

))

− Tr
(
A′PT(t+1)AQ̄v

)+
T∑

i=t+1

M(i).

By utilizing the control policy ua(t) in (74), we have

G(t) = E
[
x̂′(t)PT(t)x̂(t) + 2x̂′(t)LT(t)μw

]+
T∑

i=t

M(i).
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If we set MT = ∑T
t=0 M(t), it follows that:

J1(ua(t)) =
T∑

t=0

E
[
x̂′(t)Q(t)x̂(t) + u′

a(t)R(t)ua(t)
]

+ E
[
x̂′(T + 1)PT+1x̂(T + 1)

]

= x̂′(0)PT(t)x̂(0) + 2x̂′(0)LT(0)μw

+ MT − DT

where

MT − DT =
T∑

t=0

{
−μ′

w(PT(t + 1) + LT(t + 1))′BϒT(t)−1B′

× (PT(t + 1) + LT(t + 1))μw

+ 2μ′
wLT(t + 1)μw

+ Tr
(
A′PT(t + 1)BϒT(t)−1B′PT(t + 1)AQ̄v

)

+ Tr(PT(t + 1)Qw)
}

− Tr
(
PT(0)Q̄v

)
.

This proof is completed.

APPENDIX F
PROOF OF THEOREM 5

Proof: For the optimization problem (102), define the
following Lyapunov function:

W(t) = E
[
x̂′(t)PT(t)x̂(t) + 2x̂′(t)LT(t)μw

]+
T∑

i=t

M(i)

where M(t) satisfies (104). It follows that:

W(t) − W(t + 1) = E
[
x̂′(t)Q(t)x̂(t) + u′(t)R(t)u(t)

]

− E
[
(u(t) − ua(t))

′ϒT(t)(u(t) − ua(t))
]

+ 2E
[
u′(t)B′PT(t + 1)AC−1v(t)

]
+ 2Tr

×
(
A′PT(t + 1)BϒT(t)−1B′PT(t + 1)AQ̄v

)

(105)

where ua(t) is given in (74). Summarizing (105) from t = 0
to t = T yields that

W(0)−W(T+1) =
T∑

t=0

W(t)−W(t+1)

= x̂′(0)PT(0)x̂(0)+2x̂′(0)LT(0)μw+
T∑

t=0

M(t)

− E
[
x̂′(T+1)PT(T+1)x̂(T+1)

]

=
T∑

t=0

E
[
x̂′(t)Q(t)x̂(t)+u′(t)R(t)u(t)

]

−
T∑

t=0

E
[
(u(t)−ua(t))

′ϒT(t)(u(t)−ua(t))
]

+
T∑

t=0

2E
[
u′(t)B′PT(t+1)AC−1v(t)

]

+
T∑

t=0

2Tr
(

A′PT(t+1)BϒT(t)−1

× B′PT(t+1)AQ̄v
)

which implies that

J1(u(t)) = x̂′(0)PT(0)x̂(0) + 2x̂′(0)LT(0)μw +
T∑

t=0

M(t)

+
T∑

t=0

E
[
(u(t) − ua(t))

′ϒT(t)(u(t) − ua(t))
]

−
T∑

t=0

2Tr
(

A′PT(t + 1)BϒT(t)−1B′PT(t + 1)AQ̄v

)

−
T∑

t=0

2E
[
u′(t)B′PT(t + 1)AC−1v(t)

]
. (106)

By utilizing the admissible control policy ûa(t) in (82), we
obtain

JT
(
ûa(t)

) = J1
(
ûa(t)

)− DT

= x̂′(0)PT(t)x̂(0) + 2x̂′(0)LT(0)μw + MT − DT

+
T∑

t=0

E
[(

ûa(t) − ua(t)
)′
ϒT(t)

(
ûa(t) − ua(t)

)]

−
T∑

t=0

2E
[
ûa(t)B

′PT(t + 1)AC−1v(t)
]

−
T∑

t=0

2Tr
(
A′PT(t + 1)BϒT(t)−1B′PT(t + 1)AQ̄v

)

= x̂′(0)PT(t)x̂(0) + 2x̂′(0)LT(0)μw + HT

+Tr
(
DT(0)μwμ′

w

)+
T∑

t=1

1

t
Tr(DT(t)Cw).

Moreover, by Theorem 4, the regret satisfies

R̄egT
(
ûa(t)

) =
T∑

t=1

1

t
Tr(DT(t)Cw).

Under hypotheses H1 and H2, we obtain that R̄egT(ûa(t)) ≤
O(ln T).
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