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ABSTRACT
Geographical load balancing takes advantage of the regional
differences in dynamic electricity rates by shifting computing
tasks among geographically distributed data centers. Since
energy storage is becoming an integral part of data centers,
one can maximize the benefit of the temporal and spatial
fluctuations of electricity rates by combining geographical
load balancing and energy storage management. Previously,
the problem of integrated geographical load balancing with
energy storage has been studied based on Lyapunov stochas-
tic optimization approach, which relies on asymptotic anal-
ysis by averaging over infinite time horizon and arbitrarily
large energy storage. In this paper, we present a competi-
tive online algorithmic approach, which can be applied to fi-
nite time horizon and small-to-medium energy storage with
a worst-case guarantee from the offline optimal solutions.
By simulations on real-world data, it is observed that our
competitive online algorithms can significantly outperform
Lyapunov optimization algorithm.

CCS Concepts
•Computer-Communication Networks→ Network Ar-
chitecture and Design;
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1. INTRODUCTION
Nowadays, data centers consume a substantial amount of

electricity and generate ever increasing operation costs. The
advent of dynamic electricity markets provides a novel way
to alleviate the electricity cost of data centers. One vital
option is the concept of geographical load balancing [10], by
which computing tasks are forwarded among geographically
distributed data centers to take advantage of the regional
differences in dynamic electricity rates.

In addition to the spatial fluctuations of electricity rates,
one can also harness the temporal fluctuations of electric-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

E2DC, June 21-24 2016, Waterloo, ON, Canada
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4421-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2940679.2940680

ity rates by employing energy storage management [6] at
data centers to store electricity at a low electricity rate
and discharge from energy storage at a high electricity rate.
This naturally gives rise to an optimization problem com-
bining geographical load balancing and energy storage man-
agement. Noteworthily, the decisions of energy storage man-
agement are carried out in an online manner, based on the
currently revealed information without the knowledge of fu-
ture electricity rates and computing task workload.

In the extant literature, the decision-making problems
with uncertain future inputs are tackled by three common
approaches. First, one can rely on the predictions of future
inputs (e.g., electricity rates and computing task workload).
This approach crucially relies on accurate prediction models
or specifically trained classifiers for the particular environ-
ments, and is difficult to be adopted to new environments
with noisy or limited historical data for calibration.

Second, one can utilize stochastic optimization, which re-
lies on probability models to handle uncertainty or noisy
data. The solutions are usually obtained in the sense of
probabilistic expectation, which may deviate considerably
from a particular sample outcome. In particular, a Lya-
punov optimization approach has been proposed [11], by
which a control policy is developed to asymptotically con-
verge to the optimal policy, when inputs are assumed to be
i.i.d. or stationary Markovian, and the storage size is large.
Recently, [12] applies Lyapunov optimization approach to
integrated geographical load balancing problem energy stor-
age. However, in practice the inputs (workload and elec-
tricity rates) may be non-stationary, and the size of energy
storage may be small or medium. Lyapunov optimization
also relies on averaging over infinite time horizon, which
may not be close to the optimal when applied to a finite
time horizon.

As a departure from the aforementioned approaches, this
paper pursues an online competitive algorithmic approach,
which has been employed in a wide range of online decision-
making problems [3,4,9], without relying on the information
of future inputs. This approach can cope with arbitrary
(stochastic or adversarial) future inputs, with a finite or in-
finite time horizon, and can provide a worst-case optimality
assurance in terms of competitive ratio (by benchmarking
with the offline optimal decisions based on full future inputs)
without asymptotic assumptions. In this paper, we present
competitive online algorithms for tackling integrated geo-
graphical load balancing problem with energy storage, which
can be applied to finite time horizon and small-to-medium
energy storage with a worst-case guarantee from the offline



optimal solutions. By simulations on real-world data, it is
observed that our competitive online algorithms can signifi-
cantly outperform Lyapunov optimization algorithm.

2. PROBLEM FORMULATION
In this paper, we consider a set of n data centers, denoted

by N . Each data center j ∈ N has local power grid and
energy storage. The workload for computing tasks arrives
at a centralized forwarder. Each data center makes online
decisions for its energy management system, workload pro-
cessing and forwarding operations to minimize the total cost.
See Table 1 for a table of key notations.

2.1 Data Center System Model
Given certain workload of computing tasks, each data cen-

ter j ∈ N orchestrates different energy sources (e.g., power
grid, energy storage) to minimize the total cost, subject to
satisfying the workload and operational constraints. The
system model of such a scenario is depicted in Fig. 1 (a),
which has been widely used in the literature [11]. A discrete-
time model is considered, such that each time slot matches
the timescale at which the energy management and work-
load forwarding decisions are updated (e.g., every minute).
Without loss of generality, it is assumed that there are to-
tally T time slots, and each has a unit length, where the
inputs within one time slot are sufficiently quasi-static.

The system model of a single data center is consisted of
the following components:

• Workload: Arbitrary arrivals of workload of com-
puting tasks are considered, denoted by a(t). We do
not assume any specific stochastic model of a(t). We
normalize the unit of workload by the equivalent unit
of required electricity for the processing corresponding
computing tasks. The workload should be satisfied by
the energy acquired from the grid or energy storage.

• Power Grid: The system can acquire electricity from
the grid for unsatisfied workload in an on-demand man-
ner. Let the market rate at time t of the grid at the
j-th data center be pj(t), where mj ≤ pj(t) ≤M j . De-
note the ratio between maximum and minimum rates
by ϕj , Mj

mj
. We do not assume any specific stochastic

model on pj(t). Denote the acquired energy for satis-
fying the workload directly by vja(t) and the acquired
energy to charge the energy storage by vjb(t). M j and
mj can be estimated in advance, for example, based on
historical data. Note that the proposed algorithm still
applies, even when M j and mj are not known a-priori.

• Energy Storage: The energy storage can reduce the
total electricity cost by exploiting rate fluctuations.
The energy storage has a capacity Bj . The level of
energy storage at time t is given by:

xj(t+ 1) = xj(t) + ηcv
j
b(t)− ηdd

j(t) (1)

where dj(t) is the energy discharged from the energy
storage, vjb(t) is the energy charged to the energy stor-
age from the grid, respectively. Constants ηc ≤ 1 and
ηd ≥ 1 are charging and discharging efficiencies, re-
spectively. To capture the limitations in the charging
and discharging rates, it is required that dj(t) ≤ µd

and vjb(t) ≤ µc. The level of energy storage is re-
quired to satisfy the boundary conditions, xj(0) = 0
and xj(t) = Bj .

Note that energy storage systems may bear other tear-
and-wear and long-term maintenance costs. This paper con-
siders the short-term operation of energy storage systems,
such that the electricity cost considerably outweighs the
maintenance costs.

Notation Definition
a(t) Incoming workload arriving at centralized forwarder

at time t
aj(t) Workload processed at data center j at time t
pj(t) Market rate of electricity per unit of processed

workload at data center j at time t (where
mj ≤ pj(t) ≤M j)

qj Transmission cost per unit of workload from
centralized forwarder to data center j

Bj Capacity of energy storage at data center j
xj(t) Current level of energy storage at data center j at

time t
ηc(≤ 1) Charging efficiency of energy storage
ηd(≥ 1) Discharging efficiency of energy storage
µc Charging rate constraint of energy storage
µd Discharging rate constraint of energy storage
dj(t) Energy discharged from energy storage at data

center j at time t
vj(t) Energy acquired from the grid at data center j at

time t
vja(t) Energy acquired from the grid for satisfying

workload at data center j at time t

vjb(t) Energy acquired from the grid to charge energy
storage at data center j at time t

Table 1: Key notations.

2.2 Data Center Forwarding Model
When there are multiple data centers, we consider a cen-

tralized router that decides to which appropriate data center
is the workload forwarded. See an illustration in Fig. 1 (b).

The cost minimization problem of geographical load bal-
ancing with energy storage management is formulated in
GLB-ES.

(GLB-ES) min
∑
j∈N

T∑
t=1

p(t)
(
vja(t) + vjb(t)

)
+
∑
j∈N

qjaj(t) (2)

s.t. xj(t+ 1)− xj(t)

= ηcv
j
b(t)− ηdd

j(t), for all j ∈ N (3)

dj(t) + vja(t) = aj(t), for all j ∈ N (4)

0 ≤ xj(t) ≤ Bj , for all j ∈ N (5)

vjb(t) ≤ µc, for all j ∈ N (6)

dj(t) ≤ µd, for all j ∈ N (7)

xj(0) = 0, xj(T ) = Bj , for all j ∈ N (8)∑
j∈N

aj(t) = a(t) (9)

var. aj(t), xj(t), dj(t), vja(t), vjb(t) ≥ 0, for all j ∈ N



Figure 1: (a) A depiction of system model of data center with energy storage. (b) A depiction of forwarding
model among data centers.

Note that our model is similar to that in [12], which also
imposes QoS constraints on forwarding among data centers.
Our model can easily incorporate QoS constraints. But for
clarity, we focus on energy storage management decisions.

2.3 Online Algorithms
Let the inputs of the problem (i.e., the sequence of work-

load, market rates) be σ =
(
a(t), (pj(t))j∈N

)T
t=1

. The prob-
lem GLB-ES can be solved by linear programming, when all
inputs σ are given in advance.

However, σ is revealed gradually over time in reality, which
requires decisions to be made without future inputs. An al-
gorithm is called online, if the decision at the current time
only depends on the instantaneous inputs before or at the
current time tnow, namely,

(
a(t), (pj(t))j∈N

)
t≤tnow

.

Given input σ, let Cost(Algo[σ]) be the cost of algorithm
Algo, and Opt(σ) be the cost of an offline optimal solution
(that may rely on an oracle to obtain all future inputs). In
competitive analysis for online algorithms [3], competitive
ratio is a common performance metric, defined as the worst-
case ratio between the cost of the online algorithm Algo and
that of an offline optimal solution, namely,

CR(Algo) , max
σ

Cost(Algo[σ])

Opt(σ)
(10)

Algo is called c-competitive, if CR(Algo) = c. This paper
provides competitive online algorithms for solving GLB-ES
with a worst-case guarantee.

2.4 k-Min Search
The problem GLB-ES is closely related to a classical online

algorithmic problem called k-min search. In 1-min search
problem, a trader is searching for the minimum rate of some
asset. At each time slot t, the trader is presented a rate p(t)
and must decide whether or not to accept this rate. Once
the trader decides to accept the rate p(t), the search ends
and the trader’s cost is p(t). If the trader does not accept
any rate for the first T −1 time slots, he needs to accept any
rate at time slot T .

According to [7], the online algorithm that accepts the

first rate below threshold
√
Mm has a competitive ratio

√
ϕ.

Furthermore, any deterministic online algorithm attains a
competitive ratio at least Ω(

√
ϕ).

In more general k-min search problem [8], a trader is
searching for the k-th minimum rate of some asset, when
given a sequence of rates in an online fashion.

3. COMPETITIVE ONLINE ALGORITHMS
We denote the maximum rate, minimum rate, and its ra-

tio for data center j by M j ,mj , ϕj , respectively. For con-
venience, we assume that the data centers are ordered by
(j1, j2, ..., jN ), such that ϕj1 ≤ ϕj2 ≤ ... ≤ ϕjN . We present
online algorithms to solve GLB-ES.

3.1 Basic Online Algorithm
We first present a basic online algorithm based on 1-min

search. Online algorithm Algoth proceeds as follows: (1)
forward workload to any data center that has cheap non-
zero energy storage level, (2) consume the energy from each
energy storage, and (3) satisfy the unsatisfied workload by
the acquired power from the data center that has the mini-
mum market rate (minj∈N p

j(t)). At each data center, the
energy storage is charged from the grid, if the local market
rate is below the respective threshold (i.e., pj(t) ≤ θ). Let

M , minj∈N {qj +M j} and m , minj∈N {qj +mj}.

Algorithm 1 Algoth
[
t, a(t),

(
θ,Bj , pj(t)

)
j∈N

]
1: Sort N, such that q1 ≤ q2 ≤ ... ≤ qn
2: for j = 1 to n do

3: xj(t)← xj(t− 1)
. Satisfy workload from energy storage

4: dj(t)← min{a(t), µd,
xj(t)
ηd
}

5: aj(t)← dj(t)
6: a(t)← a(t)− dj(t)
7: xj(t)← xj(t)− ηdd

j(t)
. Store energy from grid

8: if pj(t) ≤ θ then

9: vjb(t)← min
{

[B
j−xj(t)
ηc

]+, µc

}
10: xj(t)← xj(t) + ηcv

j
b(t)

11: end if

12: end for

. Satisfy workload from the cheapest grid
13: h = arg minj∈N {pj(t) + qj}
14: vha (t)← a(t)
15: ah(t)← ah(t) + vha (t)
16: return

(
aj(t), xj(t), dj(t), vja(t), vjb(t)

)
j∈N

Theorem 1. If we set the threshold in Algoth by

θ =

√
8Mm+M2 −M

2
· ηc

ηd
(11)



Then, the competitive ratio of Algoth is bounded by

CR(Algoth) ≤
√

8Mm+M2 +M

2m
(12)

Proof. (Sketch) Workload (a(t))Tt=1 is called one-shot, if
there is a unique time slot tnz ∈ [1, T ] such that

a(t) =

{
0 if t 6= tnz

ā if t = tnz
(13)

where ā is the peak of (a(t))Tt=1. We define a function called
one-shot decomposition, which can decompose any workload
into a collection of one-shot workload:

1sDecompose
[
(a(t))Tt=1

]
= (tis, t

i
nz, ā

i)mi=1 (14)

where m is the number of decomposed one-shot workload,
tinz is the non-zero workload time slot and āi is the peak of
the i-th one-shot workload, and tis (≤ tinz) is the minimum
starting time slot for the i-th one-shot workload.
1sDecompose is constructed as follows. LetB ,

∑
j∈N B

j .

We define the accumulative workload curve by Acc[a(t)] ,∑t
t′=0 a(t′), and Acc[a(t)] + B

ηd
is the upward shift by B

ηd
.

The one-shot workload is constructed by the rectanglizing
the region sandwiched between Acc[a(t)] + B

ηd
and Acc[a(t)].

Each one-shot workload (tis, t
i
nz, ā

i) corresponds to a rectan-
gle of (tinz − tis) × āi, which is maximally inscribed in the
sandwiched region. See Fig. 2 for an illustration.

Figure 2: A illustration of 1sDecompose.

Note that 1sDecompose has the following properties:

1. a(t) can be reconstructed by the one-shot workload:

a(t) =
∑

i:tinz=t

āi for all t (15)

2. There is a non-decreasing order on the starting time
slots and non-zero workload time slots:

tis ≤ ti+1
s and tinz ≤ ti+1

nz for all i (16)

3. Let D be the set of one-shot workload that have non-
zero duration, namely, D , {i | tis < tinz}. Let D(i) be
the set of one-shot workload in D other than i, such
that the peak workload also lie within [tis, t

i
nz], namely,

D(i) , {j ∈ D\{i} | tis ≤ tjnz ≤ tinz}. If i ∈ D, then∑
j:∈D(i) ā

j + āi ≤ B
ηd

(17)

Eqn. (17) ensures that satisfying the other one-shot
workload in [tis, t

i
nz] using the energy storage still leave

sufficient capacity in the energy storage for the i-th
one-shot workload. We set each tis as minimum as
possible subject to Eqn. (17). When tis = tinz, then
the one-shot workload needs to acquire energy from
the grid.

The basic idea is that each one-shot workload can be tack-
led separately as 1-min search, and hence, we obtain the
competitive ratio of Algoth as that of 1-min search. Denote
the offline optimal solution by Opt.

In the following, we first consider unconstrained charging
and discharging rates, where µc, µd ≥ B. With respect to
each one-shot workload (tis, t

i
nz, ā

i), there are two cases:

Case 1: Market rate pj(t) > θ for all t ∈ [tis, t
i
nz] and all j ∈ N .

Then Algoth will not store energy from the grid. Algoth
needs to acquire energy from the grid for an amount
of āi at a market rate at most M at time slot tinz.
Opt needs to store energy from the grid for at least
an amount of āi ηd

ηc
at a market rate at least θ within

[tis, t
i
nz). Hence,

Cost
(
Algoth[t

i
s, t

i
nz, ā

i]
)
≤ āiM

Cost
(
Opt[tis, t

i
nz, ā

i]
)
≥ āiθ ηd

ηc

Case 2: Market rate pj(t) ≤ θ for some t ∈ [tis, t
i
nz] and some

j ∈ N . Let āi,j be the amount of workload can be
satisfied from energy storage at the j-th data center.
If āi,j > 0, then Algoth stores energy from the grid for
an amount of āi,j ηd

ηc
at a market rate at most θ. If

āi,j = 0, then Algoth needs to acquire energy from the
grid at a market rate at most M . Note that this case is
due to the fact that the energy storage has been used
previously to acquire energy at a market rate at most

θ. On average, the per unit cost is at most
θ
ηd
ηc

+M

2
.

But Opt needs to acquire energy from the grid for an
amount of āi,j at a market rate at least m. Hence,

Cost
(
Algoth[t

i
s, t

i
nz, ā

i,j ]
)
≤ āi,j

θ
ηd
ηc

+M

2

Cost
(
Opt[tis, t

i
nz, ā

i,j ]
)
≥ āi,jm

Hence, the competitive ratio is obtained by

CR(Algoth) = maxσ

∑
i,j Cost

(
Algoth[t

i
s,t
i
nz,ā

i,j ]
)

∑
i,j Cost

(
Opt[tis,t

i
nz,ā

i,j ]
) ≤ max

{ M

θ
ηd
ηc

,
θ
ηd
ηc

+M

2m

}
To minimize the competitive ratio, we set M

θ
ηd
ηc

=
θ
ηd
ηc

+M

2m
.

The positive root is θ =

√
8Mm+M2−M

2
· ηc
ηd

. Hence, the

competitive ratio of Algoth is CR(Algoth) ≤
√

8Mm+M2+M

2m
.

Finally, we consider constrained charging and discharg-
ing rates, where µc < B or µd < B. It is straightforward



to show that the competitive ratio with constrained charg-
ing and discharging rates is not higher than the one with
unconstrained charging and discharging rates.

3.2 Improved Online Algorithm
We next present an improved online algorithm based on

k-min search [8]. In a more general setting, we divide the
capacity of energy storage by k units. In algorithm Algokth,
at each time the `-th unit of energy storage is charged from
the grid at the j-th data center.

Algorithm 2 Algokth
[
t, a(t),

(
(θ`)

k
`=1, B

j , pj(t)
)
j∈N

]
1: Sort N, such that q1 ≤ q2 ≤ ... ≤ qn

. `j is the number of charged units in energy storage
2: `j ← 0 for all j ∈ N
3: for j = 1 to n do

4: xj(t)← xj(t− 1)
. Satisfy workload from energy storage

5: dj(t)← min{a(t), µd,
xj(t)
ηd
}

6: aj(t)← dj(t)
7: a(t)← a(t)− dj(t)
8: xj(t)← xj(t)− ηdd

j(t)

9: `j ← min{k x
j(t)

Bj
+ 1, k}

. Store energy from grid
10: if pj(t) ≤ θ`j then

11: vjb(t)← min
{

[B
j ·`j/k−xj(t)

ηc
]+, µc

}
12: xj(t)← xj(t) + ηcv

j
b(t)

13: `j ← min{`j + 1, k}
14: end if

15: end for

. Satisfy workload from the cheapest grid
16: h = arg minj∈N {pj(t) + qj}
17: vha (t)← a(t)
18: ah(t)← ah(t) + vha (t)
19: return

(
aj(t), xj(t), dj(t), vja(t), vjb(t)

)
j∈N

Theorem 2. If we set the threshold in Algokth by

θ` = M
(

1−
2k(1 + 1

2ks∗ )`(1− s∗)
1 + 2ks∗

)
· ηc

ηd
(18)

where s∗ is a fixed-point solution to the following equation:

2ms∗ −M
M

= 1− 2
(

(1 +
1

2ks∗
)k − 1

)
(s∗ − 1) (19)

Then, the competitive ratio of Algokth is bounded by

CR(Algokth) ≤ s
∗ (20)

Proof. (Sketch) Most of the proof is similar to Theo-
rem 1. But, with respect to each one-shot workload (tis, t

i
nz, ā

i),
there are k + 1 cases:

Case 1: Market rate pj(t) > θ1 for all t ∈ [tis, t
i
nz] and all j ∈ N .

Hence,

Cost
(
Algo

k
th[t

i
s, t

i
nz, ā

i]
)
≤ āiM

Cost
(
Opt[tis, t

i
nz, ā

i]
)
≥ āiθ1

ηd
ηc

Case 2: Market rate θ2 ≤ pj(t) ≤ θ1 for some t ∈ [tis, t
i
nz] and

some j ∈ N . Let āi,j be the amount of workload can

be satisfied from energy storage at the j-th data center.
At the j-th data center,

Cost
(
Algo

k
th[t

i
s, t

i
nz, ā

i,j ]
)
≤ (2k − 1) ā

i,j

2k
M + āi,j

2k
θ1
ηd
ηc

Cost
(
Opt[tis, t

i
nz, ā

i,j ]
)
≥ āi,jθ2

ηd
ηc

...

Case k+1: Market rate pj(t) ≤ θk for some t ∈ [tis, t
i
nz] and some

j ∈ N . Let āi,j be the amount of workload can be
satisfied from energy storage at the j-th data center.
At the j-th data center,

Cost
(
Algo

k
th[t

i
s, t

i
nz, ā

i,j ]
)
≤ āi,jM

2
+
∑k
`=1

āi,j

2k
θ`
ηd
ηc

Cost
(
Opt[tis, t

i
nz, ā

i,j ]
)
≥ āi,jm

Similar to the proof of Theorem 1, the competitive ratio
is obtained by

CR(Algokth) ≤ max
{ kM

kθ1
ηd
ηc

,
(2k−1)M+θ1

ηd
ηc

2kθ2
ηd
ηc

, ...,
kM+

∑k
`=1 θ`

ηd
ηc

2km

}
To minimize the competitive ratio, we set

kM

kθ1
ηd
ηc

=
(2k−1)M+θ1

ηd
ηc

2kθ2
ηd
ηc

= . . . =
kM+

∑k
`=1 θ`

ηd
ηc

2km
(21)

One can solve θ` from Eqn. (21) as

θ` = M
(

1−
2k(1 + 1

2ks∗ )`(1− s∗)
1 + 2ks∗

)
· ηc

ηd
(22)

where s∗ , M

θ1
ηd
ηc

. Namely, the competitive ratio of Algokth

is CR(Algoth) ≤ s
∗.

By substituting Eqn. (22) into s∗ =
kM+

∑k
`=1 θ`

ηd
ηc

2km
, one

can obtain

2ms∗ −M
M

= 1− 2
(

(1 +
1

2ks∗
)k − 1

)
(s∗ − 1) (23)

The complete proofs can be found in the full paper [5].

4. EMPIRICAL EVALUATION
The performance of the proposed algorithms is evaluated

based on the simulation studies using real-world traces. We
consider the case of four data centers. We assume four
data centers of Wikipedia are located in four different places
whose spot electricity market rate are not necessarily equal.
Every data center is equipped with a energy storage system
which can shift the electricity peak during the peak periods
of the spot price.

4.1 Parameters and Settings of Simulations
• Workload: The real-word workload data is based on

the access traces published by Wikipedia [2]. One line
of those traces corresponds to one web access, includ-
ing: 1) a monotonically increasing counter (useful for
sorting the trace in chronological order), 2) the times-
tamp of the request in Unix notation with millisecond
precision, and 3) the requested URL etc. We assume
that there are four Wikipedia data centers located in
four different locations, namely, Chicago, New York,



Palo Alto and Houston. According to the requested
URL, we identify which data center is visited by the
user. By counting the number of accesses every 10 min-
utes in a data center, we can approximately calculate
the workload of a data center according to the model
in [12]. The workload is measured by the amount of
electricity in every five minutes with unit of KW. Note
that we ignore the QoS model in [12], so the workload
only depends on the frequency of web accessing.

Figure 3: The workload of the four data centers in
Chicago, New York, Palo Alto and Houston.

We parsed the trace files which record the website ac-
cess requests during September, 2007, and select 400
slots whose length is 10 minutes to implement the on-
line algorithm and Lyapunov optimization algorithm.

• Electricity Rates: In our simulation, the real-time price
and workload data are both based on real-word raw
data [1]. We use the 5-min locational marginal rates in
four different locations: Chicago, New York, Palo Alto
and Houston. The electricity price is unit of $/MWh.

Figure 4: The spot prices of four locations, namely,
Chicago, New York, Palo Alto and Houston.

• Energy Storage: For simplicity, It is assumed that ηd =
ηc = 1. To compare with Lyapunov optimization, set
the charging and discharging rate constraints µc and
µd to be 10KWh per slot.

4.2 Performance Comparison
In the first evaluation, we set the energy storage capacity

as 300 KWh, and the maximum charge and discharge rate
are both 10 KWh. The initial state of batteries are set to
be 150 KWh. In the improved online algorithm we partition
the total capacity of batteries into forty equal parts, which
means the parameter k in Algokth takes value 40. The per-
formance result is shown in Figure 3. From this figure we
can conclude that the basic online algorithm and improved

online algorithm performs better than the Lyapunov opti-
mization algorithm with around 40% and 50% improvement
in cost saving, respectively.

Figure 5: Performance comparison of Lyapunov op-
timization and proposed online algorithms.

Other than that, we also record the fluctuation of energy
storage reserves under the Lyapunov optimization and our
proposed online algorithm, respectively. See Figure 4 and 5.
We analyze the behavior of the two algorithms and observe
that the fluctuation scope under Lyapunov optimization is
much smaller than that of the proposed online algorithm,
which may lead to underutilization of the energy storage
resource. Actually the fluctuation scope under Lyapunov
optimization algorithm accounts for only about 15-25% of
the total capacity, while ours can almost reach 100%. Actu-
ally, the Lyapunov optimization guarantees the fluctuation
in a certain scope when it tries to improve the performance.
In some case, it may be conservative and thus fails to gain
further profit. This can explain why our proposed online al-
gorithms outperform the Lyapunov optimization algorithm.
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