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For optimization problems involving time-varying input, if the entire
input is available from the start, decisions of an algorithm can be
determined offline. However, in practice, knowledge on the system is
usually limited, and input for the algorithm can be only acquired piece
by piece. In this case, optimization for algorithm decisions must be
conducted in an online fashion. Motivated by this, there are increasing
research interests on online optimization and efficient online
algorithms, whose decision making only depends on current or past
inputs. This thesis focuses on several influential online optimization
paradigms in computer science and operations research: the online QoS
(Quality of Service) buffer management problem, the online trading
problem, and the online learning problem.

The online QoS buffer management problem is a standard online
paradigm in resource allocation. In its basic setting, packets with
different values defined according to their QoS requirements arrive in
an online fashion to a switching node. To maximize cumulative profit,
the switch needs to decide whether to admit the incoming packet based
on the packet value and its buffer availability. Even though this problem
was proposed more than a decade ago, no optimal online solution has
been proposed in the literature. In this thesis, we define a new online
algorithm by leveraging a novel construction involving virtual queues,
and prove that it can achieve the lower bound of the competitive ratio
for any online algorithms.

This thesis also investigates another important application of online
optimization in online trading. Nowadays, the electricity market has
become more deregulated, resulting in individual participants to design
more intelligent trading algorithms. The individual consumers and
electricity suppliers both need to bid to offer or procure along with
other competitors, faced with unpredictable market price fluctuation.
Compared to traditional study, the novelty of our work is that we study
a more general scenario where the cargo can be stored somewhere, as in
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a pumped storage system, for more desirable prices. In the presence of
storage, it is more challenging to design online trading strategies, due to
the additional design space enabled by the storage. In this thesis, we
study the online trading problems from both sides of the electricity
market (energy suppliers and consumers) and provide optimal online
solutions, respectively.

The last investigated online optimization problem is the online
learning problem, where regret is taken as an important performance
metric for an online algorithm. Much efforts have been devoted to the
Expert learning problem and the Online Convex Optimization (OCO)
problem etc. Those traditional frameworks are limited in some recent
application scenarios, especially when the learning set is from a metric
space or the learning algorithm is faced with non-convex losses.
Motivated by this, we focus our efforts on the Online Non-Convex
Learning problem (ONCL)1, which generalizes the OCO problem by
removing the convexity assumption on both the cost function and the
decision set. In this thesis, we propose a novel online algorithm, which
improves the known result O(

√
T lnT ) to O(

√
T ), achieving the lower

bound for the OCO problem and filling the regret gap between the
state-of-the-art results in online convex and non-convex learning
problems.

1 It is also called the Lipschitz Expert problem in some literature.



iii

Á�

3¢S¥§XÚ�A5Ï~´���§
��{�Ñ\�U
�X�mÅÚ¼�§¦��{�ûü7L±3���ª(½"
C5§éõïÄ8¥33�`z¯K9�A�3��{þ"�
©ïÄ
O�Å�ÆÚ$ÊÆ¥A«²;�3�`z¯K§=3
�QoS£Quality of Service¤è�+n¯K§3��´¯K§±9
3�ÆS¯K�"
3�è�+n¯K�äN|µXeµ�âÑÖ�þ§�ä¥z

�êâ�Ñ�©���A½���5þzÙ�¤õ=u���Å
¤¼��ÂÃ"ù
�±?¿�5K���ä!:"�
��z
=uêâ�¼��ÂÃ§��ÅI��âêâ���±9�c�
è�G¹û½´Ä�Âêâ�"T¯K®�õc�{¤§�Ev
k�Z�3�)û�Y"3�©¥§·�JÑ
��ÄuJ[è
��3��{§¿y²Ù�±���`�competitive ratio"
d	§�©�&?
3��´¯K"8c§>å½|�5�g

dz§�<^r±9>åøAûÑ�±3>å½|¥±é��g
dÝ5?1�´§�Ó���¡é���½|d�ÅÄ¤�5�
ºx"�©�M#�?3u§·�ïÄ
�«'± ���z�
|µ§=>å�±6��;3;UXÚ¥§¦�½|ë�ö�±
±�n��d�?1�´"ù��O\
¯K�]Ô5§Ï�ù
���*Ð
�{�O�E,Ý"�©�é��;�3��´¯
K£�)U
øAûÚ�<�¤ö¤§·�©OJÑ
�`�3
��{"
ù�Ø©ïÄ�����¯K´3�ÆS¯K"C5§éõ

ó��åuïÄ¤¢�;[¯KÚ3�à`z¯K��"¦+é
ù
¯K�ïÄ��
é��¤õ§�´3k
A½�|Üe§
ù
DÚ�{É�
�½���"AO´�ûü8´ëY�½ö
8I¼ê´�à��ÿ"Äud§·�ïÄ
���z��à3
�`z¯K"± �(JL²§²;�3�ÆS�{�Âñ�Ý
´O(

√
T lnT )"3�©¥§·�JÑ
�«#�3�ÆS�{§

T�{�Âñ�Ý´O(
√
T )§��
�à3�`z¯K�5Ue

."



ACKNOWLEDGEMENT

Except the research topics which could have a predictable result, I was
rarely able to foresee the things to happen in my life. However, one
thing that I can make sure is that, behind each success of my life, there
is always generous help from the people that I have met. This time is no
exception.

First of all, I would like to give my ineffable thanks to my advisor,
Professor Wing Shing Wong, one of the nicest people that I have met. I
have to admit that it is really a lucky thing for me to work with
Professor Wong during my PhD study. He taught me limited
knowledge, but revealed me an unlimited world of research. And more
importantly, he guided me to cherish the passion of exploring the
unexplored, enjoy the moment of achievements and build myself
interests in any interesting ideas. This is one of the most valuable gifts I
have received in the past three years and will definitely benefit my
future research career.

I would also thank the outstanding faculty members in CUHK who
offer me generous help in my study, including Professor Minghua
Chen, Jianwei Huang, Soung-Chang Liew, John C.S. Lui, Shiqian Ma,
Chandra Nair, Wingki Shum, Man-Cho So and Pascal Olivier Vontobel
et al. I would also give my thanks to the staff members in IE
department, including Connie, Kammy and Winnie et al., for their nice
help.

I also thank all my collaborators including Professor Enrique
Mallada and Dr. Mohammad H. Hajiesmaili et al. Especially, I value
the extensive, unforgettable and helpful discussions with Ying and Lei
et al.

I also thank all of my friends and labmates in CUHK. They are
Yuanpei Cai, Chung Shue Chen, Lei Deng, Yixuan Ding, Yuzhe Li,
Qiulin Lin, Fang Liu, Zhongchang Liu, Yuan-Hsun Lo, Jingjing Luo,
Cheng Tan, Suzhen Wang, Hanling Yi, Yiding Yu, Jianing Zhai, Jinbei
Zhang, Ying Zhang, Yijin Zhang, and Yuan Zhao et al. Each time when
I think of the life in the past three years, my mind is filled with their
laughters and faces. I would also give my thanks to Professor Hui
Cheng and Professor Huanshui Zhang who generously hosted me when
I visited them.



v

At last, I would give my deepest thanks and love to my parents, who
gave me eyes to look at the beauty, brought me up with selfless love, and
taught me the first lesson to explore the world. I will never forget the
happy time when I was growing up.



vi

This work is dedicated to my parents and grandfather.



CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . iv

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Online Optimization and Online Algorithms . . . . . . . 1
1.2 Competitive and Regret Analysis for Online Computation 2
1.3 Overview of Studied Problems and Our Contributions . . 5

1.3.1 Online QoS Buffer Management . . . . . . . . . 5
1.3.2 Online Trading in a Deregulated Market . . . . . 6
1.3.3 Online Learning . . . . . . . . . . . . . . . . . 9

1.4 Summary of Other Classic Online Paradigms: Known
Results and Open Problems . . . . . . . . . . . . . . . . 11

1.5 Thesis Organization and Published Contents . . . . . . . 14

2. Online QoS Buffer Managment . . . . . . . . . . . . . . . . 16
2.1 Problem Background . . . . . . . . . . . . . . . . . . . 16
2.2 Related Results . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 FIFO Preemptive Model . . . . . . . . . . . . . 16
2.2.2 Non-Preemptive Model . . . . . . . . . . . . . . 17
2.2.3 Related Theoretical Problems and Timely

Applications in a Broader Background . . . . . . 17
2.3 Summary of Main Results and Adopted Techniques . . . 18
2.4 Problem Formulation and Preliminaries . . . . . . . . . 20
2.5 A Simplified Online Problem and the Threshold-Based

Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.1 Threshold-Based Policy Design for a Simplified

Problem . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2 A Threshold-Based Strategy for the General

Problem . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Optimal Randomized Online Algorithm . . . . . . . . . 32

2.6.1 Optimal Online Algorithm for the Fractional
Admission Model . . . . . . . . . . . . . . . . . 33

2.6.2 Performance Analysis of fBuffAlg . . . . . . . . 35



Contents viii

2.6.3 Optimal Randomized Strategy for the Discrete
Admission Model . . . . . . . . . . . . . . . . . 38

3. Online Trading I: Online Offering of Renewable Supplies . . . 44
3.1 Problem Background . . . . . . . . . . . . . . . . . . . 44
3.2 Related Solutions . . . . . . . . . . . . . . . . . . . . . 45
3.3 Summary of Results and Adopted Techniques . . . . . . 47
3.4 Problem Formulation . . . . . . . . . . . . . . . . . . . 49

3.4.1 Hour-Ahead Electricity Market . . . . . . . . . 49
3.4.2 The properties of SRGENCO . . . . . . . . . . 50
3.4.3 Profit Model . . . . . . . . . . . . . . . . . . . 52
3.4.4 Profit Maximization Problem . . . . . . . . . . . 52
3.4.5 Online Competitive Algorithm Design . . . . . . 53

3.5 Optimal Online Offering Strategy with Accurate Single-
Slot Prediction . . . . . . . . . . . . . . . . . . . . . . 54
3.5.1 Simplified Problem with Accurate Single-Slot

Prediction . . . . . . . . . . . . . . . . . . . . . 54
3.5.2 Online Algorithm Design for sOnOffer . . . . . 55
3.5.3 The Design of Function g(·) . . . . . . . . . . . 56
3.5.4 Competitive Analysis for Online Offering

Algorithm . . . . . . . . . . . . . . . . . . . . . 59
3.6 Online Offering Strategy without Accurate Single-Slot

Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6.1 mOffAlg: sOffAlg with Multiple Offer

Submissions; p(t) Is Unknown, r(t) Is Known . 63
3.6.2 gOffAlg: Generalized mOffAlg; u(t) Is Given

with Forecasting Error, p(t) Is Unknown . . . . . 65
3.7 Experimental Results . . . . . . . . . . . . . . . . . . . 65

3.7.1 Experimental Settings . . . . . . . . . . . . . . 66
3.7.2 Experimental Results . . . . . . . . . . . . . . . 67

4. Online Trading II: Online Procuring of Individual Consumers . 71
4.1 Problem Background . . . . . . . . . . . . . . . . . . . 71
4.2 Summary of Main Results and Adopted Techniques . . . 71
4.3 Problem Description . . . . . . . . . . . . . . . . . . . 72

4.3.1 Market Model . . . . . . . . . . . . . . . . . . . 72
4.3.2 Data Center Net Energy Demand . . . . . . . . 73
4.3.3 Energy Procurement and Storage Management

Scenario . . . . . . . . . . . . . . . . . . . . . . 73
4.3.4 Storage Model . . . . . . . . . . . . . . . . . . 73

4.4 Online Solution . . . . . . . . . . . . . . . . . . . . . . 75
4.4.1 The ECOM as an Extension of k-min Search

Problem . . . . . . . . . . . . . . . . . . . . . . 75



Contents ix

4.4.2 Constructing Virtual Storages . . . . . . . . . . 76
4.4.3 The Threshold-based Procurement Policy of the

ONCOM . . . . . . . . . . . . . . . . . . . . . 77
4.4.4 Determining the Procurement Quantity . . . . . 78
4.4.5 Competitive Analysis . . . . . . . . . . . . . . . 80

4.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5.1 Extension to Online Bidding Strategy Design . . 85
4.5.2 Extension to Practical Storage Models . . . . . . 86

4.6 Experimental Results . . . . . . . . . . . . . . . . . . . 87
4.6.1 Experimental Settings . . . . . . . . . . . . . . 88
4.6.2 Experimental Results . . . . . . . . . . . . . . . 89

5. Online Learning . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1 The Expert Problem . . . . . . . . . . . . . . . . . . . . 93
5.2 Online Convex Optimization . . . . . . . . . . . . . . . 94
5.3 A More General Framework: Online Non-Convex

Learning/Lipschitz Expert . . . . . . . . . . . . . . . . 95
5.4 Related Results . . . . . . . . . . . . . . . . . . . . . . 96
5.5 Online Recursive Weighting Algorithm . . . . . . . . . 97

5.5.1 A Layered Grid Structure . . . . . . . . . . . . . 98
5.5.2 Sampling . . . . . . . . . . . . . . . . . . . . . 101
5.5.3 Recursive Choosing Policy . . . . . . . . . . . . 102

5.6 Regret Analysis for the Online Recursive Weighting
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.7 Adaptive Sampling . . . . . . . . . . . . . . . . . . . . 110
5.7.1 Online Recursive Weighting Algorithm with

Adaptive Sampling . . . . . . . . . . . . . . . . 111
5.7.2 Regret Analysis . . . . . . . . . . . . . . . . . . 112

5.8 Extensions: Expert Learning with Partial Information
Feedback . . . . . . . . . . . . . . . . . . . . . . . . . 114

6. Conclusion and Discussions . . . . . . . . . . . . . . . . . . 116
6.1 General Analysis Methods for Online Optimization . . . 116
6.2 Other Practical Settings for Online Optimization . . . . . 117

Appendix 119

A. Part of Proofs of Chapter 2 . . . . . . . . . . . . . . . . . . . 120
A.1 Proof of Lemma 2.5.3 . . . . . . . . . . . . . . . . . . . 120
A.2 Proof of Corollary 2.5.1 . . . . . . . . . . . . . . . . . . 121
A.3 Proof of Lemma 2.5.5 . . . . . . . . . . . . . . . . . . . 122
A.4 Proof of Lemma 2.5.6 . . . . . . . . . . . . . . . . . . . 125



Contents x

B. Part of Proofs of Chapter 5 . . . . . . . . . . . . . . . . . . . 127
B.1 Proof of Inequality (5.9) . . . . . . . . . . . . . . . . . 127
B.2 Proof of Equality (5.10) . . . . . . . . . . . . . . . . . . 128
B.3 Proof of Inequality (5.11) . . . . . . . . . . . . . . . . . 131
B.4 Proof of Lemma 5.7.1 . . . . . . . . . . . . . . . . . . . 131

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



LIST OF FIGURES

1.1 The Online Non-Convex Learning Problem . . . . . . . 9

2.1 FIFO QoS Buffer Management. . . . . . . . . . . . . . 20
2.2 Visualized expression of Σ. . . . . . . . . . . . . . . . . 27
2.3 Description of the state of the fBuffAlg algorithm at time

slot t. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 Allocate admitted sub-packets in a water-filling manner. . 35
2.5 The illustration of the proof for Lemma 2.6.3. . . . . . . 40

3.1 The energy offering and storage management scenario. . 45
3.2 Different structures of function g(s). . . . . . . . . . . . 57
3.3 Illustration of calculating the offering volume ô(t) when
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1. INTRODUCTION

1.1 Online Optimization and Online Algorithms

With the entire input available from the start, decisions of an algorithm
during the investigated time interval can be optimized offline. While in
many practical areas such as computer science and operations research,
it is infeasible to either lay out a comprehensive deterministic/stochastic
model valid from the start to the end or acquire the whole input
sequence by some idealistic predictor. In other words, the knowledge
for the system or the input for the algorithm has to be revealed
piece-by-piece as time goes forward, and the optimization process must
be conducted in an online fashion. With this motivation, much of the
recent research is focused on online optimization problems and efficient
online algorithms, whose decisions depend on only the current or past
input. To illustrate the concept and methodology of the online
optimization framework, we provide two simple examples in the
following, which are the one-way trading problem and the Expert
problem.

Paradigm 1: (One-Way Trading) Consider the fundamental one-way
trading (OneTrad) or k-max search problem [58, 59], that the online
player is required to convert one asset into another, e.g., dollars for yen,
given a time-varying exchange rates p(t) ∈ [pmin, pmax] arriving online.
1 The offline formulation of the one-way trading problem is as follows,

OneTrad max
T∑
t=1

p(t)a(t)

s.t.
T∑
t=1

a(t) ≤ K.

var. a(t) ∈ {0, 1}.

(1.1)

In Problem (1.1), K is an integer and used to denote the total number of
asset units of the trader, and a(t) is her binary action at round t. a(t) = 1
means selling out one unit of asset and 0 is not. The trader, without
knowing the future price and ending time2, has to decide to accept the

1 The time series search problem and secretary problem [59, 112] are also quite similar to this context.
2 The setting for the ending time of the game is slightly different from that of the traditional one-way
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current price or wait for the more attractive prices in the future.

Paradigm 2: (Expert problem) Consider a repeated game composed of
T iterations, where an online player is assisted with a finite number of
“experts”, labelled by an index set denoted by I. At each round t, the
online player, without knowing current and future costs on the expert,
has to choose one expert as her representative. After committing to one
choice, the cost on each expert, which is arbitrary and unavailable to the
online player in advance, will be revealed. The cost on the chosen expert
will be committed. The goal is to minimize the cumulative cost.

Optimizing above problems offline is fairly simple. Indeed, the
optimal solution in the one-way trading problem is to find the time slots
of which the prices are among the maximum K ones to sell one unit of
the asset; and in the Expert problem, one just simply chooses the expert
of the minimum cost at each round for the optimal performance.
However, the future information in practice is usually unaccessible and
rarely satisfies any known distributions; in extreme cases, the input
trajectory may even fit more an adversary model, which assumes the
input sequence is generated by a powerful opponent. For example, in
the one-way trading problem, there is no way for the trader to access
the market price in the future, and it is even difficult to only predict
whether the price will go up (or down). The case is similar in the
Expert problem, where the online player in many application scenarios
has limited knowledge on the expert. Without the entire knowledge on
the market price or the cost function of the expert, it is impossible to
figure out the optimal solution. Motivated by this fact, one prefers to
designing algorithms whose decisions are based on the real-time
scenario rather than an elaborate mathematical model. This idea results
in the methodology of online optimization which aims at providing a
comparable performance guarantee under any circumstances, when
compared with the optimal offline solution. The next section introduces
two fundamental metrics quantifying the performance of the online
algorithm.

1.2 Competitive and Regret Analysis for Online Computation

Generally speaking, the performance of an online algorithm can be
measured in two aspects, i.e., competitive ratio and regret, which refer
to the maximum performance ratio and gap between the optimal offline

trading problem or k-max search problem. Specifically, in the one-way trading problem, the game ends
when all the units of assets are sold; and in the k-max search setting, the player is required to complete
the transaction in a given time interval. While here we assume that the ending time is determined by the
adversary. In Chapter 2, we will introduce an optimal online algorithm for the new setting.
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solution and a particular online algorithm under any input instance,
respectively. Even though both competitive ratio and regret focus on the
“worst-case” performance when an algorithm is faced with arbitrary
inputs, one should decide which one of them is more relevant
depending on the application scenario. Generally speaking, in areas of
resource management and job scheduling etc., one is usually interested
in the competitive performance of an online algorithm, which measures
the robustness of the online algorithm within an unknown and
unpredictable environment. While in some areas as online learning, the
regret metric might be more appropriate than the other candidate in
reflecting the convergence performance of a learning algorithm. Taking
the one-way trading problem and the Expert problem as examples, we
will introduce the details on how to define the competitive ratio and
regret, respectively.

For online optimization problems such as one-way trading, the goal
of the online algorithm is to provide a performance bound under any
input instance and the performance of an online algorithm can be
measured by using competitive ratio. For the one-way trading problem,
an instance constructed by an adversary, denoted by ω ∈ Ω, can be
defined as an input series including the price p(t) over [1, T ], i.e.,

ω
def
= [ω(t) = (p(t))]t∈T ,

and Ω is used to denote the set of all possible instances, i.e.,

Ω
def
=
{

[(p(t))]t=1:T : p(t) ∈ [pmin, pmax], T ∈ Z+
}
.

Given the definition of instance, the performance of an online algorithm
can be measured using competitive ratio, which is referred to as the
maximum ratio of the profit earned by the OPTimal offline solution
(OPT) and a particular online algorithm A under any input instance,
i.e.,

CR(A)
def
= max

ω∈Ω

ProfOPT(ω)

ProfA(ω)
,

where ProfOPT(ω) and ProfA(ω) are the profit obtained by the
respective optimal offline solution and the online algorithm A when the
input instance is ω. For a randomized online algorithm R, we assume
the adversary is oblivious3 and the competitive ratio is of the following
form:

CR(R)
def
= max

ω∈Ω

ProfOPT(ω)

E[ProfR(ω)]
.

3 An adversary is said to be oblivious when the adversary is unaware of the action of the online player.
This is opposite to the term, “non-oblivious”.
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In subsequent analysis in Section 2, readers will find that by
carefully designing an online algorithm, the profit ratio between the
optimal offline algorithm and the online algorithm is always upper
bounded by ln θ + 1, where θ = pmax/pmin. That is, the competitive
ratio of the algorithm referred to is ln θ + 1, or the algorithm is
(ln θ + 1)-competitive. For the above mentioned problem, ln θ + 1 is
the best result that an online algorithm can achieve.

For the Expert problem, a commonly accepted goal for the online
player is to choose among those experts as well as possible, i.e.,
minimize the pseudo-regret4, which is formally defined as the
difference between the online cumulative cost and the cumulative cost
using an optimal offline choice in hindsight, i.e.,

regretT (A)
def
= max

c1,c2,...,cT

{
T∑
t=1

E[ct(It)]−min
i∈I

T∑
t=1

ct(i)

}
,

where It ∈ I is the index of the chosen expert at time slot t, and ct(·) is
the cost function of experts. This is a critical difference compared with
the one-way trading problem.

A sublinear regret for an online algorithm is of practical
significance, since it implies that the time average of the cost difference
converges to zero through learning as time approaches infinity. For the
Expert problem, by using the Hedge (or Multiplicative Weight) [108]
algorithm which will be introduced in Chapter 5, one can attain a regret
of O(

√
T ), touching the known regret lower bound for any online

algorithm.
In addition to the above classic paradigms, in the last three decades,

the idea of online computation has rapidly spread over various areas,
such as caching, resource management, server scheduling in computing
systems, online learning in artificial intelligence, online search,
one-way trading and portfolio selection in financial engineering etc. It
is impossible for this thesis to explore the broad applications of online
optimization in all areas. This thesis mainly focuses on several popular
and influential online optimization problems, which are the online QoS
buffer management problem, the online trading problem and the online
learning problem. All of those are classic paradigms in computer
science or operation research, receiving increasing research interests
from the community.

4 We call it regret in short in the rest of this thesis.
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1.3 Overview of Studied Problems and Our Contributions

1.3.1 Online QoS Buffer Management

The online QoS buffer management problem, which is related to many
existing works in caching, scheduling and other online allocation
settings [20, 26, 91], can be viewed as a classic online optimization
problem in the presence of resource constraints. The classic example is
the DiffServ (differentiated service) networks, in which packets with
different QoS requirements are associated with different quantized
values, which characterize the profit earned by switches if the packets
are successfully delivered. When the network is congested, the switches
are not able to admit all arriving packets due to limited buffer capacity.
Hence, to maximize its profit, the switch must decide to admit packets
with higher values. Despite its classic application, the QoS buffer
management problem could be considered as a general admission
control problem in several state-of-the-art applications. As an example,
one can consider the problem of the value-based cloud resource
allocation with limited computation capacities [23, 146], in which the
online jobs with different valuations must be either admitted or rejected
upon their arrival based on their values and the utilization of the cloud
servers.

In offline scenario in which the arrival and departure of packets are
known in advance, the QoS buffer management is simple and can be
solved using a linear program. However, in a real network environment,
many unpredictable factors impact the profile of arriving packets,
hence, offline algorithms are not practical. Thus, the main research
effort has been focused on online settings in which the arrival and
departure profile of packets are not known in advance. The existing
algorithms usually follow the competitive analysis framework that tries
to achieve a bounded performance as compared to the offline optimum
without relying on future information.

The first study on QoS buffer management with multiple values
appeared as early as in 2000 [20, 91]. The work was motivated by
rising trends of differentiated services in networks. The early study was
rapidly augmented by proposals of various problem
settings [24, 31, 53, 61, 66, 67, 92, 100, 113, 121]. These problem
settings can be roughly categorized according to the operation rules on
the buffer or queue into the FIFO preemptive model and the
non-preemptive model. In the FIFO preemptive model, packets which
have been buffered in the queue are served in a FIFO manner, and can
be discarded. In the non-preemptive model, the admitted packets cannot
be ejected. There are also many interesting works investigating
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extensions of the FIFO preemptive or non-preemptive model. For
example, in [53], the authors further take into account the
heterogeneous packet processing time for different traffic. In
[61, 66, 67], the authors address a model which involves a departure
deadline for each transferred packet. In [31, 100, 121], the basic model
is extended to the multiple input queues.

In this thesis, we mainly focus on the non-preemptive QoS buffer
management problem in online setting. Even though the
non-preemptive QoS buffer management problem was proposed more
than a decade ago, no optimal online solution has been proposed in the
literature. This thesis aims to provide a more complete picture for this
problem by proposing: 1) A fixed threshold-based online algorithm
with smaller competitive ratio than the existing results; 2) an optimal
deterministic online algorithm under fractional admission model in
which a packet could be admitted partially; and 3) an optimal
randomized online algorithm for the general problem. We consider the
last result being the most important contribution among the three. For
details of those algorithms and adopted techniques, one can refer to
Chapter 2.

1.3.2 Online Trading in a Deregulated Market

Another important application studied in this thesis is online trading. In
daily financial activities, there are plenty of scenarios where one needs to
decide how to trade in a market with an aim of pursuing profit or saving
money. For example, the electricity market nowadays have become more
and more deregulated, that motivates individual participants to design
intelligent trading algorithms. In a deregulated market, the individual
consumers and electricity suppliers both need to bid to offer or procure
with other competitors, faced with a unpredictable market price due to
unknown reasons.

The novelty of our work lies that we studied a more general scenario
where the cargo can be stored somewhere, for example in a pumped
storage system, such that the cargo can be traded at a more intriguing
price. The electricity storage system for an energy supplier or
individual user is necessitated by the unpredictable energy output or
demand. And now it accounts for a considerable percentage of the
infrastructure of the electrical power system. In the presence of storage,
it is more challenging to design the online trading strategy, because of
the additional design space enabled by the storage. In this thesis, we
study the online trading problems from both sides of a deregulated
electricity market, i.e., the energy suppliers and individual consumers.
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Online Offering of Energy Suppliers

Renewable power producers, such as wind farms and solar plants, are
being rapidly integrated to the power system due to increasing
environment concerns. In 2015, investment on renewables sets a record
of 296 billion US dollars, more than double the amount for fossil
fuels [12]. In order to hedge against the inherent uncertainty of
renewable generation, renewable power producers commonly equip the
renewable plants with energy storage systems. In several existing
electricity markets, renewable power producers receive guaranteed
feed-in tariffs, e.g., “take-all-wind” policy in California’s electricity
market [3], which guarantees that the market absorbs the entire
renewable supply at favorable fixed prices. This policy is not viable in
the future as reduction in price [2] along with the environmental
concerns pushes rapid penetration of the renewables. For example, in
Denmark, the plan is to achieve 50% and 100% renewable generation in
2020 and 2050, respectively [10]. Hence, in eventual market with the
considerable renewables’ market share, it is inevitable to treat
renewable producers the same as other traditional generation
companies [94].

Several electricity markets such as NYISO [8], CAISO [3], and
Nord Pool [9] operate in a multi-settlement manner and settle
transactions at multiple timescales, i.e., day-ahead, hour-ahead [63, 87],
and real-time. Considering the uncertainty of renewable output, the
renewable power producers tend to participate in short-term market,
specifically hour-ahead market, without suffering profit reduction
caused by long-term forecasting errors [94]. In reality, CAISO’s
Participating Intermittent Resource Program (PIRP [3]) is already
requiring wind power plants to bid into their hour-ahead market. In
hour-ahead market operation, the generation companies including
renewable producers submit their offers (including offering price and
offering volume) for selling the electricity in the next hour (see
Sec. 3.4.1 for more details on the hour-ahead market operation).

Motivated by this, we focus on designing profit maximization
offering strategies, i.e., the strategies that determine the offering price
and volume, for a storage-assisted renewable power producer that
participates in hour-ahead electricity market. Designing the strategies is
challenging since (i) the underlying problem is coupled across time due
to the evolution of the storage level, and (ii) inputs to the problem
including the renewable output and market clearing price are unknown
when submitting offers. Following the competitive online algorithm
design approach, we first study a basic setting where the renewable
output and the clearing price are known for the next hour. Then, we



1. Introduction 8

consider the case in which the clearing price is unknown. Finally, we
extend the above approach to the scenario where the renewable output
has forecasting error. The the theoretical competitive analysis shows the
online algorithm guarantees a bounded performance ratio of O(ln θ̂) (θ̂
is the ratio between the maximum and minimum market price),
compared to the optimal offline solution. In addition to that, The
trace-driven experiments are provided to demonstrate that the
algorithms achieve performance close to the offline optimal and
outperform a baseline alternative significantly. For details, readers can
refer to Chapter 4.

Online Procuring of Individual Consumers

The electricity cost constitutes a significant portion of a data center’s
operating expenses. For example, Google and Microsoft’s energy bills
are more than 30% of total cost of their data centers [125]. In recent
years, there has been an unprecedented growth in the number and size
of data centers, as the infrastructures of the Internet cloud services. A
direct consequence is a rapid increase in the energy footprint of data
centers worldwide; in 2015, the global electricity usage of data centers
reached 416.2TWh, significantly higher than the UK’s total consumption
of about 300TWh [5]. Consequently, managing the power consumption
of data center has become critically important for the operators of data
centers [125]. In the recent years, there have been substantial research on
reducing power consumption of data centers, e.g., incorporating on-site
renewable sources [110], dynamic right sizing [107], geographical load
balancing [127, 111], and on-site energy storage systems [78, 76, 48, 93],
among others.

This thesis introduces a methodology on how to design energy
procurement and storage management strategies to minimize the
electricity bill of storage-assisted data centers. This investigation is
motivated by two new developments in power management, namely, the
popularization of on-site storages and the option of real-time pricing in
deregulated electricity markets. Empowering data centers with on-site
storages can reduce the electricity bill by shaping the energy
procurement from deregulated electricity markets with real-time price
fluctuations. In a data centers with on-site storage, the net energy
demand could be satisfied by either purchasing the energy from the
real-time market, or by discharging the local storage. When the
electricity is cheap, the data center can purchase electricity to charge
the storage for future usage during high price intervals.

Designing such strategies is challenging since the net energy demand
of the data center and electricity market prices are not known in advance,
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Fig. 1.1: The Online Non-Convex Learning Problem

and the underlying problem is coupled over time due to evolution of the
storage level. In this thesis, we model the battery management of data
centers as a novel online trading problem, which has not been studied in
depth. Using the construction of virtual storage introduced in Chapter 2,
we design an online algorithm that can achieve the optimal competitive
ratio as a function of the price fluctuation ratio. In addition to theoretical
analysis, this thesis also validates the algorithm using data traces from
electricity markets and data-center energy demands. For details, readers
can refer to Chapter 3.

1.3.3 Online Learning

In this thesis, we also investigate a class of fundamental online
optimization frameworks, such as the classic Expert problem [72] and
Online Convex Optimization problem [149]. Those frameworks have
significantly influenced the machine learning community with many
recent applications in artificial intelligence and financial engineering,
such as online routing [30, 136], spam email filtering [79, 130], online
metric learning [86], ad selection and content ranking in search engines
[54, 115, 138], etc.

These problems stem from the classic Expert learning problem which
was introduced by N. Littlestone and Y. Freund et al. (see [108] and [72],
respectively) and rapidly enriched with many variants proposed. As an
example, we have introduced the basic version of the Expert problem in
Paradigm 2.

In addition to the Expert learning problem, much recent efforts have
been devoted to studying the so-called Online Convex Optimization
(OCO) problem since the seminal work by Zinkevich [149] et al. To
some degree, the OCO problem can be seen as a generalization of the
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Expert problem to a metric learning space. Specifically, the online
player in the OCO framework chooses a decision point, denoted by xt,
from a bounded convex learning set K ⊂ Rn; after the choice is
committed, a bounded convex cost function ft ∈ F : K 7→ R is
revealed to the player. Similar to the Expert problem, the regret is of the
following form:

regretT (A)
def
= sup

f1,f2,...,fT∈F

{
T∑
t=1

E[ft(xt)]−min
x∈K

T∑
t=1

ft(x)

}
, (1.2)

It is well known that the lower bound of the regret for the OCO
problem is Ω(

√
T ) [80] and researchers have proposed a large number

of online algorithms whose regret can attain this lower bound, (see the
recent survey paper [80], and the references therein).

Despite the succuss of the Expert problem and the OCO problem,
both of them have limitations in many practical scenarios, especially
when the learning set is from a continuum and the cost function is
non-convex. Motivated by this, our work generalizes the OCO problem
by removing the convexity assumption on the decision set K and the
cost function ft (we generalize it to a general Lipschitz continuous
function). This generalization brings out the Online Non-Convex
Learning (ONCL) problem, which is necessitated by many
state-of-the-art applications. For example, in the portfolio selection
problem [55, 88], the decision maker (e.g., the trader) chooses a
distribution of her wealth allocation over n assets xt, at each round. By
the end of each round, the adversary chooses the market returns of the
assets with positive values. In some specific settings [27, 104, 137], the
online portfolio selection problem is a non-convex one due to the
non-convex diversification constraints and non-convex transaction
costs, and thus the traditional OCO framework fails in modeling such
case. In addition, there are extensive machine learning research
focusing on non-convex loss functions in large margin
classifiers [64, 119, 144]. In [64, 119], non-convex online Support
Vector Machine (SVM) models has been studied which adopts a
non-convex loss function, called Ramp Loss, to suppress the influence
of outliers. In [144], a special non-convex penalty, called the smoothly
clipped absolute deviation penalty, is imposed on the hinge loss
function in the SVM. Such a new SVM is applied to identify important
genes for cancer classification [144].

For the general framework, we propose a novel online algorithm,
called the Online Recursive Weighting (ORW) algorithm, and prove
that the regret of the ORW is upper bounded by O(

√
T ). The obtained

regret bound matches the well-known lower bound of the regret for the
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OCO [80], so the ORW algorithm is asymptotically optimal for the
general ONCL problem. To the best knowledge of ours, this is the first
optimal result for the ONCL/Lipschitz Expert problem.

The general idea of the ORW algorithm is to divide the decision set
into multiple subsets according to a grid layered structure. Any subset
in the upper layer is divided into multiple smaller subsets in the lower
layers. Our algorithm recursively selects the subset from the topmost
layer to the bottommost layer until a decision point is identified. In each
layer, the ORW algorithm leverages the classic Exponential Weighting
algorithm [29] to select a subset in the lower layer. As the core
technical contribution, the ORW properly partitions the subsets and sets
the subset-selecting probabilities, thereby, it asymptotically achieves
O(
√
T ) regret. Moreover, the ORW algorithm is extended to an

adaptive version (the AORW algorithm), which increases the
granularity parameter gradually as time goes on. The AORW
guarantees O(

√
T ) regret, reduces the computational complexity of the

ORW, and can still work properly when the duration of time horizon is
unknown to the online player. For details of the proposed algorithms,
one can refer to Chapter 5.

1.4 Summary of Other Classic Online Paradigms: Known Results and
Open Problems

In addition to the above introduced online optimization problems, we
provide a simple account for other classic online problems, as well as
related results. For more online paradigms, the readers are recommended
to refer to the introductory books [39], [47] and [80].

In many practical problems, one is usually faced with a
sub-problem, which is the so-called rent/buy problem. Among all kinds
of variants of the rent/buy problem, a classic example is Ski rental
[89, 131] where a decision maker needs to decide whether to stay in the
current state, paying a samll amount of cost per time unit, or switch to
another state, paying some fixed large cost but with no further payment
needed. Mathematically, the problem definition is as follows:

Paradigm 3: (Ski Rental) A skier is going skiing for an unknown
number of days. Assume that it costs σ per day to rent skis at a ski shop
and buying skis costs Σ. At the beginning of each day, the skier has to
choose between two options: continuing renting skis for one more day
or buying a pair of skis. If the skier knows in advance how many days
she will go skiing, say k, she can spend the minimum money, i.e.,
min{k · σ,Σ}. The question is what to do when she does not know in
advance how many days she will ski.
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For the Ski Rental problem, the break-even algorithm which advices
to buy the skis at the bΣ/σc-th day [90] is known to be the best
deterministic algorithm. Running the break-even algorithm, one spends
the cost which is always less than 2 times of that of the optimal strategy
no matter the optimal strategy rents or buys the skis. In other words, the
break-even algorithm is 2-competitive. By using randomization, [89]
reduced the competitive ratio to e/(e − 1), touching the lower bound
for all online algorithms, either deterministic or randomized.

Another classic paradigm where one needs to decide between
switching to a new state and staying the current state is the List Update
problem, whose definition is as follows:

Paradigm 4: (List Update Problem) Given a set of items in a list for
users to query. We assume the inquires comes arbitrarily without
satisfying any stochastic distribution. Search begins at the head of the
list, and thus each inquiry incurs a cost which is proportional to the
distance of the accessed item from the head of the list. One is required
to come up with a strategy of reordering the list so that the total cost of
accesses is minimized. The reordering can be done at any time but
incurs a cost. The standard model includes two reordering actions: (a) a
free transposition of the item being accessed anywhere ahead of its
current position; (b) a paid transposition of a unit cost for exchanging
any two items in the list.

For the List Update problem, there were many algorithm proposed,
such as the MTF (Move to front) algorithm, the TRANS (Transpose)
algorithm and the FC (Frequency Count) algorithm. Among them, the
optimum competitive ratio for the list update problem can be attained by
the MTF algorithm, which simply moves the accessed item to the front
of the list without changing the order of other items. In [135], Sleator
and Tarjan proved that MTF is 2-competitive by using Potential method
analysis.

The Ski Rental problem and the List Update problem can be extended
to a more general model, called the metrical task system [40].

Paradigm 5: (Metrical Task System) A task system is defined to a pair
consisting of a set of states and and a metric distance function mapping
from each state pair to a real value. An input to the task system is a
sequence of cost vectors of non-negative entries that determine the
processing costs for states when processing the arriving task. One is
required to come up with an online algorithm for the task system which
produces a schedule to determine the sequence of states. The
processing cost for each time slot is the processing cost of arriving task
plus the transition cost determined by the distance function. The
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objective of the algorithm is to find a schedule such that the cost is
minimized.

As the above online problems, the most common measure to analyze
algorithms for metrical task systems is the competitive analysis. For
deterministic online algorithms, there is a tight bound 2n − 1 on the
competitive ratio by Borodin et al. [40], where n is the number of
states. For randomized online algorithms, the competitive ratio is lower
bounded by Ω(log n/ log log n) and upper bounded by
O ((log n log log n)2). The lower bound is due to Bartal et al. [35]. The
upper bound is due to Fiat and Mendel [68] who improved upon a result
of Bartal et al. [34].

In addition to the metrical task systems, the k-server problem [117]
is another fundamental problem of theoretical computer science which
captures the scheduling problem in metric spaces. Its definition is as
follows:

Paradigm 6: (k-server Problem) In this problem, an online algorithm
must control the movement of a set of k servers, lying in a metric space
consisting of n points, and to satisfy requests that arbitrarily appears
in this space. As each request arrives, the algorithm must determine
which server to move to the requested point. The goal of the algorithm
is to keep the total distance all servers move small, relative to the total
distance the servers could have moved by an optimal one who knows in
advance the entire sequence of requests.

In 1990, Fiat et al. [69] first proved that there exists an algorithm
with finite competitive ratio for any constant k and any metric space,
and finally Koutsoupias and Papadimitriou [102] proved that Work
Function Algorithm (WFA) has competitive ratio 2k − 1 in 1995.
However, despite the efforts of many other researchers, reducing the
competitive ratio to k or providing an improved lower bound remains
open as of 2014. The most common believed scenario is that the Work
Function Algorithm is k-competitive. To this direction, in 2000, Bartal
and Koutsoupias showed that this is true for some special cases (if the
metric space is a line, a weighted star or any metric of k + 2 points). In
2011, a randomized algorithm with competitive bound Õ(log2 k log3 n)
was found [33]. Moreover, for a special case (the topology is a line),
[106] provided a constant 3-competitive algorithm.

All of above problems are fundamental in computing system with
unpredictable features. There are also a lot of classic problems in
machine learning which can be formulated as an online optimization
framework. Besides the Expert problem and the online convex
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optimization problem we have introduced, another classic framework is
the multi-armed bandit problem, together with its variant versions.

Paradigm 7: (Multi-Armed Bandit Problem: Nonstochastic Version)
In this problem, each arm provides a reward which is arbitrary and
unavailable to the online player. Through lever pull, only the cost of the
chosen arm is revealed to the player. The objective of the online player
is to maximize the sum of rewards earned compared to the “best” arm
over the investigated time interval.

The multi-armed bandit problem can be seen as a generalization to the
Expert problem with partial information feedback. To this end, O(

√
T )

characterizes one lower bound of regret for any online algorithms. By
equipping an unbiased predictor, Auer et al. [29] defines the classic
EXP3 algorithm which attains the optimal regret.

There is also a stochastic version for the multi-armed bandit problem
where the reward on the arm is from a fixed distribution specific to that
arm. In order to minimize the cost, the online player has to balance the
tradeoff between “exploitation” of the arm that has the highest expected
payoff and the “exploration” of new arms to get more information of
other options. Also by Auer et al., an algorithm called the Upper
Confidence Bound (UCB) [28] was designed to achieve the optimal
regret, O(

√
T ).

In addition to the above basic version, there is also extensive
research studying the bandit problem in a metric space as [97, 98, 99].
Different from the discrete case, tight results for the continuous case are
fairly limited, needing more investigation from the community. For
more details on the bandit problem, the readers are recommended to
refer to the survey paper [43].

1.5 Thesis Organization and Published Contents

The rest of the thesis is organized as follows.
Chapter 2 introduces details of the Online QoS Buffer Management

problem as well as the optimal online solution we proposed. The
optimal online algorithm is based on a critical technique, virtual queue,
which also shows potentials to address a class of online problems. The
results in Chapter 2 are mainly from my published manuscript [143] in
journal of POMACS, whose conference version can be found in
proceedings of ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS’2018).

Chapter 3 introduces details on the online trading problem for the
supply side of the electricity market. The main adopted idea is the
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thresholding policy partly introduced in [143]. However, we wish to
point out that we are considering a scenario in which the supplier has to
participate in the market by online auction. This is different from the
problem studied in [143]. The results in Chapter 3 are mainly from my
published manuscript [142], which is accepted as an extended abstract
by SIGMETRICS’2017. For more details, one can refer to the
unpublished technical report [141] in arXiv.

Chapter 4 introduces details on the online trading problem for the
demand side of the electricity market. The main adopted idea is the
virtual queue we have introduced in [143]. The theoretical problem is
novel and firstly formulated in this manuscript. The algorithm and
results in Chapter 3 are mainly from my unpublished manuscript
coauthored with Mohammad H. Hajiesmaili (JHU), Enrique Mallada
(JHU), and my advisor, Wing Shing Wong.

Chapter 5 introduces details on a more general online learning
framework than the traditional Expert and Online Convex Optimization
problem. The algorithm and results in Chapter 5 are mainly from my
published manuscript [140] in journal of POMACS, whose conference
version can be also found in proceedings of ACM International
Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS’2018).

The last chapter discusses possible research directions in the future.

2 End of chapter.



2. ONLINE QOS BUFFER MANAGMENT

2.1 Problem Background

The QoS buffer management problem, with significant and diverse
computer applications, e.g., in online cloud resource allocation
problems, is a classic online admission control problem in the presence
of resource constraints. In its basic setting, packets with different values
according to their QoS requirements, arrive in online fashion to a
switching node with limited buffer size. Then, the switch needs to make
an immediate decision to either admit or reject the incoming packet
based on the value of the packet and its buffer availability. The
objective is to maximize the cumulative profit of the admitted packets,
while respecting the buffer constraint. Even though the QoS buffer
management problem was proposed more than a decade ago, no
optimal online solution has been proposed in the literature. This chapter
contributes to this problem by firstly proposing the optimal online
algorithm.

2.2 Related Results

2.2.1 FIFO Preemptive Model

The paper [91] deals with a preemptive single-queue model where the
admitted packets can be discarded. The authors study a class of greedy
algorithms which discard packets with the lowest value when an
overflow occurs. Then, competitive ratio of the greedy algorithm is
analyzed. Following [91], many other papers aimed to find better
algorithms with lower competitive ratios. Generally speaking, the
state-of-the-art result on the competitive ratio for a preemptive model is
1.732 [60], yet no optimal solution has been proposed. For a special
case with only two different packet values, [60] introduces a
deterministic strategy and proves that this strategy achieves an optimal
competitive ratio of 1.282. In addition to the single-queue model, [31]
and [100] study QoS buffer management within multiple queues,
achieving a competitive ratio smaller than 2 for a special case where
only two packet values are involved. For other work on preemptive
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buffer management, readers can refer to [24, 92, 113, 118], as well as
the survey paper [74].

2.2.2 Non-Preemptive Model

For non-preemptive buffer management, The authors in [20] provided
the first study of a two-value model. In their problem setting, packets
are tagged as either being a high priority packet or a low priority
packet. Specifically, they assign a benefit of α ≥ 1 to every high
priority packet and a benefit of 1 to every low priority packet. Then, a
general lower bound of (2α − 1)/α for the two-value setting is proved.
Then, [26] proposes an algorithm that can achieve the above lower
bound for the competitive ratio. The two-value setting can be
characterized as a special case of a general buffer management problem
where packets are allowed to take arbitrary value in a particular region
[vmin, vmax]. This generalization makes the algorithm design far more
challenging. In [25], the authors prove that the optimal competitive
ratio for deterministic online algorithms is lower bounded by ln θ̃ + 1,
where θ̃ = vmax/vmin is the ratio between the maximum and minimum
packet value. In [148], the author provides a lower bound of the
competitive ratio for any online algorithm (deterministic or
randomized), which is 1

2
ln θ̃ + 1. [26] presents two online policies, the

Round-Robin and Selective Barrier policy which set a linear
non-decreasing threshold function with respect to the queue length,
showing that they are both edln θ̃e-competitive. [25] improves the
above results for small θ̃ by proposing the smooth selective barrier
policy. When θ̃ is small (specifically, θ̃ < e), the competitive ratio of
smooth selective barrier is proved to be ln θ̃ + 2 + O(ln2 θ̃/B), where
B is the buffer capacity. In spite of the above works, no optimal online
algorithms, either deterministic or randomized have been proposed
since this problem was first formulated. In this thesis, one of our most
important contributions is to introduce a randomized online algorithm
for the non-preemptive model which can be proved to be optimal.

2.2.3 Related Theoretical Problems and Timely Applications in a
Broader Background

The Online QoS Buffer Management problem has intrinsic relations to
many classic computer science problems, such as the time series search
problem [112], the one-way trading problem [58, 59], the
multiple-choice secretary problem [21, 71] and the online knapsack
problem [32, 38]. The substantial difference is that in addition to the
uncertainty in packet arrival (which is the same in above problems), the
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QoS buffer management problem comes with another uncertainty in the
network resource supply (that corresponds to the packet departure).
This makes the adversary have more flexibility to make worst input by
using two sources of uncertainty.

Almost all aforementioned classic problems have timely
applications in the recent active research topics. For example, [146] is
an example of a natural extension of online knapsack problem in the
cloud resource allocation problem. The pricing strategy presented in
[146] is close to our profit-based admission control with a social
welfare maximization goal. Similarly, [134] represents the first online
combinatorial auction designed for the cloud computing paradigm.
Both [146] and [134] are the natural extensions of the online knapsack
problem. Both works, however, fail to incorporate the latter uncertainty
in provisioning of the network resource.

2.3 Summary of Main Results and Adopted Techniques

The following summarizes the main results and the conceptual
framework of the solution design. All the introduced algorithms have a
common structure which set a threshold value to either admit or reject
the packets. We refer to these algorithms as threshold-based online
algorithms.

B In Section 2.5, we introduce a simplified problem that assumes no
packets departure, i.e., the admitted packets stay at the buffer
permanently. For the simplified problem which theoretically is quite
similar to online knapsack problem [32, 38], we design an algorithm to
adopt a fixed threshold value for every state of the queue length of the
buffer. An arriving packet is admitted only when its value is above or
equal to the corresponding threshold. By optimizing the threshold
values, we ultimately achieve a closed-form competitive ratio, which is
proved to be the optimal among all deterministic online algorithms.
While using several tailored techniques suitable for the remaining part
of the thesis, our results match to the state-of-the-art result for online
knapsack problem [32]. Subsequently, we extend the threshold-based
strategy of the simplified problem to the original problem, with packet
departure. By optimizing the threshold values, we achieve an online
algorithm that attains a better competitive ratio than the existing
works [20, 26, 91] and hence is of interest by itself.

B In Section 2.6, our goal is to propose a randomized online
algorithm with the optimal competitive ratio. Toward this, in
Section 2.6.1, we first relax the assumption of the discrete packet
admission, i.e., either admit or reject the packet. In the relaxed model,
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the switching node can admit a fraction of the packet and in turn receive
the reward proportionally. Then, we propose a novel strategy that builds
a set of virtual sub-queues with unit capacity for each departed packet.
By defining virtual sub-queues, we can track the history of packet
departure, facilitating to potentially improve the competitiveness of the
online algorithm.

By leveraging the idea of sub-queue construction, we then propose
an algorithm that maintains a state vector consisting of the queue length
of each sub-queue and associates each virtual sub-queue with a
threshold-based admission strategy, a scaled version of the one
proposed in Section 2.5. Then, the admitted portion of the arriving
packet will be properly allocated among sub-queues in a water-filling
manner. The analysis shows that the proposed algorithm achieves a
competitive ratio of

[
1 + (ln θ̃ + 1)θ̃/d

]
· (ln θ̃ + 1), where θ̃ is the

packet value fluctuation ratio and W is a parameter that determines the
granularity of the fractional model. With sufficiently large W , the
competitive ratio approximates the known lower bound of ln θ̃ + 1 for
deterministic online algorithms [25]. Different from the Selective
Barrier policy in [25] (with competitive ratio of O(ln2 θ̃) + ln θ̃ + 2 for
small θ̃) and [26] (with competitive ratio of e × dln θ̃e), which set a
fixed threshold value only based on the state of queue length, the
proposed algorithm adopts an independent threshold-based admission
strategy for each virtual sub-queue, which corresponds to one unit of
buffering budget.

B In Section 2.6.3, we propose a randomized rounding approach to
extend the result of the fractional admission model to the original
discrete model. First, we prove that the optimal competitive ratio of any
randomized online algorithm for the discrete case is lower bounded by
ln θ̃+ 1, which is also the tight lower bound of the online algorithms for
the fractional admission model as well. This result shows that the
randomization will not “outperform” the optimal online algorithm for
the fractional admission model. Based on this observation, it is natural
to seek a randomized scheme to keep the expected queue length equal
to that of the fractional case. Our proposed randomized algorithm
achieves the same competitive ratio as the optimal online algorithm for
the fractional case, meeting the optimal lower bound, ln θ̃ + 1, thereby
it is the optimal online algorithm. The main endeavor is to properly
design the admission probabilities based on the actions taken by the
optimal online algorithm for the fractional admission model.
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2.4 Problem Formulation and Preliminaries

In the networks supporting DiffServ, each packet is associated with a
profit-related value according to its importance. We assume each switch
node is equipped with a non-preemptive First-In-First-Out (FIFO)
queue. With the goal to maximize the cumulative profit, the switch
node has to make an instant decision on whether to buffer the incoming
packet. In the following, we give a formal formulation for such
problem.

FIFO 
Scheduler(4)v (3)v(5)v(6)v

( )u t

B

( )v t

( )b t

Fig. 2.1: FIFO QoS Buffer Management.

We partition the time horizon into slots according to the arrival time
of the packets. Specifically, a time slot begins just before a new packet
arrives to the switching node, and ends before the next packet arrival. By
this definition, each time slot contains exactly one packet arrival.

Suppose that the size of packets are identical and the buffer can store
at most B packets. The number of packet departures at time slot t is
denoted by u(t). By v(t) ∈ [vmin, vmax], we denote the value of the
arriving packet at the beginning of t-th time slot, and vmax and vmin

denote the maximum and minimum packet values, respectively. Both
v(t) and u(t) are exogenous inputs controlled under an adversary
strategy. The online algorithm must decide to either admit or reject a
packet upon its arrival. We represent the binary decision variable by
abusing the notation a(t) ∈ {0, 1}, where a(t) = 1 represents
admission of the packet; 0 otherwise. Finally, b(t) denotes the buffer
level, i.e., the number of packets in the buffer, at the end of time slot t,
and is expressed by

b(t) = [b(t− 1) + a(t)− u(t)]+ ,

where [·]+ denotes projection onto the nonnegative orthant. The number
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of packets in the buffer must satisfy the buffer capacity constraint, i.e.,

b(t− 1) + a(t) ≤ B.

The objective is to maximize the profit of the switching node, i.e., the
sum of values of admitted packets, over the time horizon, T = [1, T ].
Mathematically, the Online Buffer Management (OnBuff) problem is
formulated as follows:

OnBuff max
∑
t∈T

v(t)a(t)

s.t. b(t) = [b(t− 1) + a(t)− u(t)]+ , ∀t ∈ T ,
b(t− 1) + a(t) ≤ B, ∀t ∈ T ,

var. a(t) ∈ {0, 1}.

(2.1)

In our analysis, we assume that the initial state of the buffer is 0, i.e.,
b(0) = 0. In the online context, the exogenous inputs v(t) and u(t), and
the ending time T are not known in advance, and we do not rely on any
stochastic modeling of the exogenous inputs.

Note that Problem (2.1) can be considered as a natural extension of
the online knapsack problem1 [32, 147, 38], and the category of
conversion problems in financial markets [122]; some well-known
variants are the time series search problem [112], the one-way trading
problem [58, 59] and the secretary problem [21, 71]. The exogenous
input v(t) in Problem (2.1) is similar to the item values in the online
knapsack problem and sequential online price in the conversion
problems. However, u(t) is another exogenous input to Problem (2.1)
which does not exist in the aforementioned problems. In terms of
competitive design, existence of two sets of exogenous inputs, i.e., v(t)
and u(t), empowers the adversary to construct worst-case instances in a
larger space, potentially resulting in a worse competitive ratio. Hence,
online algorithm design becomes more challenging, since the adversary
is more powerful. We refer to Section 2.2.3 for detailed discussions
regarding similar problems.

In the following, we introduce some definitions and notations which
are used for competitive analysis in this chapter. By bAω(t), we denote
the queue length at slot t under A and a particular instance ω. Let b
denote the maximum queue length that A reaches under ω over the time
horizon, i.e., maxt∈T b

A
ω(t) = b. By this definition, we can partition

the universal set of input instances, denoted by Ω, into multiple separate
1 In the online knapsack problem, the items with different weights and values, i.e., (δ(t), v(t)) arrive

online and a feasible solution is any subset S of items such that
∑
t∈S δ(t) < B, where B is the knapsack

capacity. The goal is to maximize the value of selected items, i.e.,
∑
t∈S v(t).
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Tab. 2.1: Summary of key notations related to the Online QoS Buffer Management problem
Notation Description

t Index of each time slot
T The number of time slots, T ≥ 0
T Set T = {1, 2, . . . , T}

vmax, vmin The maximum and minimum packet values

v(t)
Packet value at t, vmin ≤ v(t) ≤ vmax, known for t, unknown
for τ ∈ T : τ > t

vi Threshold value to admit the i-th packet, i = 1, 2, . . . , B

θ̃ The value fluctuation ratio, θ̃ = vmax/vmin

u(t) The number of packet departures at time slot t
b(t) The number of packets buffered packets at time slot t
B The capacity of the buffer equipped in the switch node

a(t)
a(t) ∈ {0, 1}. The decision variable of the online algorithm at
time slot t, 1 represents admission and 0 is rejection

subsets as follows:
Ω =

⋃
b∈{1,2,...,B}

ΩA
b ,

where

ΩA
b

def
=

{
ω ∈ Ω : max

t∈T
bAω(t) = b

}
,

represents the set of all input instances that result in the maximum queue
length b by executing algorithm A.

Definition 2.4.1: Define the local competitive ratio CRb(A) under the
subset of input instances ΩA

b as

CRb(A)
def
= max

ω∈ΩA
b

ProfOPT(ω)

ProfA(ω)
.

Given Definition 3.5.1, we redefine CR(A) as

CR(A) = max
b∈{1,2,...,B}

CRb(A).

We also use the following expressions for an input instance ω =
[(v1, u1), (v2, u2), . . . , (vT , uT )]:

1. The notation ×n is used to represent repeated input segments.
Specifically, (v, u) × n (or ω × n) signifies the input tuple (v, u)
(or input segment ω) will repeatedly appear n times in the
subsequent time slots.

2. The concatenation of ω1 and ω2 is denoted by ω1 + ω2 and
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expressed by

ω1 + ω2 = [ω1(1), ω1(2), . . . , ω1(T1), ω2(1), ω2(2), . . . , ω2(T2)] .

2.5 A Simplified Online Problem and the Threshold-Based Algorithm

The QoS buffer management problem involves two exogenous inputs
v(t), u(t). To analyze Problem (2.1), we first investigate a simplified
version of the original problem by setting the exogenous input u(t) to
be zero in the entire time horizon. In other words, we assume that there
is no packet departure during the time horizon, i.e., u(t) = 0, for
t = 1, 2, . . . , T . In this way, the original problem reduces to the
one-way-trading-like problem which has been introduced in the
introduction section.

To design an online solution for the simplified scenario, we follow a
well-established design approach for these problems and explore a class
of deterministic online algorithms which are threshold-based. The main
idea of the threshold-based strategies is that for any state of the buffer,
there is a fixed threshold and the incoming packet will be admitted if its
value is greater than or equal to the corresponding threshold. The
analysis is then focused on demonstrating that by optimizing the
threshold values, the threshold-based strategy can achieve the optimal
competitive ratio among all deterministic online algorithms for the
simplified problem.

2.5.1 Threshold-Based Policy Design for a Simplified Problem

By simplifying Problem (2.1) and setting u(t) = 0, t ∈ T , we formulate
the OneTrad problem introduced in the introduction section.

For Problem (1.1), we device a threshold-based online algorithm
called sBuffAlg, which is defined by means of a series of
non-decreasing threshold values vi, i = 1, 2, . . . , B. For convenience,
we categorize those vis of the same value into a single step. The goal is
to design the optimal values of vi as a function of queue length to
specify the minimum value to admit the i-th packet.

Recall that ΩsBuffAlg
b is the subset of input instances that result in the

maximum queue length b upon executing the online algorithm
sBuffAlg. The following lemma characterizes a critical property for the
worst instance in ΩsBuffAlg

b .

Lemma 2.5.1: Assume CRb(sBuffAlg) > 1 andω = [v(t)]t∈T is a worst
instance in ΩsBuffAlg

b . Then at any slot t when sBuffAlg and OPT buffer
packet simultaneously, v(t) is exactly equal to the threshold of sBuffAlg.



2. Online QoS Buffer Managment 24

Proof of Lemma 2.5.1. We prove Lemma 2.5.1 by contradiction.
Assume that a worst instance is [v(t)]t∈T . Then suppose there exists

a time slot t such that sBuffAlg and OPT buffer packet simultaneously
and v(t) is larger than the threshold value of sBuffAlg, i.e., v(t) > vi,
i = b(t− 1) + 1. Now we present the following input instance to
sBuffAlg:

[v(1), . . . , v(t− 1)] + [vi] + [v(t+ 1), . . . , v(T )].

Under the new instance, the total number of buffered packets and
buffering time slots of sBuffAlg keep unchanged. The profit earned by
sBuffAlg decreases by v(t) − vi, while profit decrement of OPT is less
than or equal to v(t)− vi. The local competitive ratio CRb(sBuffAlg) is
larger than 1, so the above instance results in a larger competitive ratio.
This contradicts the assumption that ω is the worst instance in ΩsBuffAlg

b .
We complete the proof. 2

The next lemma characterizes upper bounds for local competitive
ratios of sBuffAlg.

Lemma 2.5.2: Assume the threshold-based algorithm sBuffAlg is
defined by non-decreasing threshold values vi that satisfies the
condition v1 = vmin. If the length of the first step is λ, then

1. for the subset ΩsBuffAlg
b where b < λ, the local competitive ratio is

1, and

2. for b ≥ λ, the local competitive ratio within the subset ΩsBuffAlg
b

satisfies
CRb(sBuffAlg) ≤ vb+1B

b∑
i=1

vi

.2 (2.2)

Proof of Lemma 2.5.2. For Lemma 2.5.2, we have the following
analysis:

1. For b < λ, the threshold value of sBuffAlg is always equal to m
over T . That means sBuffAlg buffers all packets and obtain the
same profit as OPT. In this case, the local competitive ratio is 1.

2. Suppose b ≥ λ. If CRb(sBuffAlg) = 1, the case is trivial and
Equation (2.2) definitely holds. We only consider the case that
CRb(sBuffAlg) > 1. For an instance within ΩsBuffAlg

b , the threshold
values of sBuffAlg are always less than or equal to

2 For consistence, we define vB+1 = vmax.
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vb+1 (vb+1 > vmin), since the maximum queue length is b and vi
are non-decreasing. Assume ω is a worst instance lying in
ΩsBuffAlg
b . Then, according to Lemma 2.5.1, a packet value under ω

will be exactly equal to the threshold value of sBuffAlg when
OPT and sBuffAlg buffer this packet simultaneously. Moreover,
when only OPT buffers a packet, it is obvious that the packet
value is less than the threshold value of sBuffAlg. That means,
under ω, all the packets buffered by OPT are of values less than or
equal to vb+1. Thus, the profit earned by OPT under ω is at most
vb+1B. Meanwhile, the minimum profit earned by sBuffAlg is at

least
b∑
i=1

vi due to its threshold-based admission strategy. Thus, we

have proved that the largest profit ratio within subset ΩsBuffAlg
b is at

most vb+1B/
b∑
i=1

vi.

This completes the proof. 2

For b > λ, consider the following instance with increasing packet
values:

[v1, v2, . . . , vb, (vb+1 − δ)×B],

under which the profit earned by OPT is (vb+1 − δ)B and the profit
earned by sBuffAlg is

∑b
i=1 vi. The worst-case profit ratio shown in

Equation (2.2) can be realized by the above instance with δ → 0, i.e.,

CRb(sBuffAlg) ≥ lim
δ→0

(vb+1 − δ)B
b∑
i=1

vi

.

Combining with Lemma 2.5.2, we get

CRb(sBuffAlg) =
vb+1B
b∑
i=1

vi

, for b ≥ λ. (2.3)

According to Lemma 2.5.2 and Equation (2.3), the worst case occurs
among subsets ΩsBuffAlg

b , b ≥ λ, so the competitive ratio of sBuffAlg is

CR(sBuffAlg) = max
b=λ,λ+1,...,B

vb+1B
b∑
i=1

vi

.

Conditioning on the length of the first step λ, the minimum
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competitive ratio, which is denoted by CR(sBuffAlg|λ) can be obtained
by optimizing the threshold values vλ+1, vλ+2, . . . , vB:

min y

s.t. y ≥ (vb+1B)/
b∑
i=1

vi, b = λ, λ+ 1, . . . , B.

vars. y, vmin ≤ vb ≤ vmax, b = λ+ 1, λ+ 2, . . . , B.

(2.4)

The following lemma gives a necessary condition for
CR(sBuffAlg|λ) to achieve its minimum value.

Lemma 2.5.3: CR(sBuffAlg|λ) achieves its minimum value only if the
following expression holds:

vλ+1B

vminl
=

vλ+2B

vminλ+ vλ+1

= · · · = vmaxB

vminl +
B∑

i=λ+1

vi

· (2.5)

In the next step, we show that the minimum value of problem (2.4) is
at least ln θ̃ + 1, which provides a lower bound for the competitive ratio
of sBuffAlg. By Equation (2.5), we can represent B as

B = (
vλ+1

vmin

+
vλ+2 − vλ+1

vλ+1

+
vλ+3 − vλ+2

vλ+2

+ · · ·+ vmax − vB
vB

)
vmin

vλ+1

l.

Thus, the competitive ratio of sBuffAlg with the first step length being
λ can be expressed as

CR(sBuffAlg|λ) = 1 +
vλ+1 − vmin

vmin

+
vλ+2 − vλ+1

vλ+1

+ · · ·+ vmax − vB
vB

·

Let

Σ =
vλ+1 − vmin

vmin

+
vλ+2 − vλ+1

vλ+1

+
vλ+3 − vλ+2

vλ+2

+ · · ·+ vmax − vB
vB

.

Since the value of Σ is equal to the size of the shaded area in Figure
2.2, we have CR(sBuffAlg|λ) > 1 + ln(vmax/vmin) = 1 + ln θ̃.

According to the results in Lemma 2.5.3, the following theorem
follows.

Theorem 2.5.1: Given a non-decreasing threshold values with the
length of the first step being λ, the optimal competitive ratio that can be
achieved by sBuffAlg, denoted by γλ satisfies(

γλ +B

B

)B−λ+1

−
(
γλ +B

B

)B−λ
− θ̃

l
= 0. (2.6)
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Fig. 2.2: Visualized expression of Σ.

Assuming λ∗ is the optimal solution to minimize the above function and
γ∗ is the corresponding optimal value, the optimal threshold values are

vλ∗+1 = γ∗vminλ
∗

B
,

vλ∗+i+1 = vλ∗+1

(
vmax

vλ∗+1

) i
B−λ∗

, for i = 1, 2, . . . , B − λ∗.

Proof of Theorem 2.5.1. According to Lemma 2.5.3, we have

vλ+1 =
γλvminλ

B
.

Moreover,

vλ+2 − vλ+1

vλ+1

=
vλ+3 − vλ+2

vλ+2

= · · · = vB+1 − vB
vB

,

hence,

vi+1

vi
=

(
vmax

vλ+1

) 1
B−λ

, i = λ+ 1, λ+ 2, . . . , B.

The above equations give the threshold values. According to Lemma
2.5.3, we have that

vi+1 − vi
vi

vmin

vλ+1

λ = 1, i = λ+ 1, λ+ 2, . . . , B.
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Thus, combining the above equations, we have

vλ+1

vmin

=

[(
vmax

vλ+1

) 1
B−λ

− 1

]
λ.

Replacing vλ+1 with γλvminλ/B yields Equation (2.6). 2

We have introduced a threshold-based strategy sBuffAlg with a set of
non-decreasing threshold values. The next theorem shows that sBuffAlg
is optimal among all deterministic online algorithms.

Theorem 2.5.2: The threshold-based algorithm sBuffAlg is optimal
among all deterministic online algorithms.

Proof of 2.5.2. Let A be any deterministic online algorithm. In order to
prove this theorem, we shall show that A cannot achieve a lower
competitive ratio than that of sBuffAlg. Toward this, consider the
following instance with increasing packet values

[(vmin)×B︸ ︷︷ ︸
first round

, (vmin + δ)×B︸ ︷︷ ︸
second round

, . . . , (vmin + (n− 1)δ)×B︸ ︷︷ ︸
penultimate round

, (vmin + nδ)×B︸ ︷︷ ︸
last round

],

where δ = vmax−vmin

n
. By v̄i, we denote the packet value of the i-th

packet that A admits under the above instance. In the first round, A is
presented packets of packet value vmin for B times. If A has never
accepted any packet, the adversary can stop the process right after the
first round and construct an instance with the profit ratio being infinite.
Assume A accepts λ̄ > 0 packets in the first round. Let B̄ be the total
number of packets buffered during the above process. Then, the profit
ratio between OPT and A when the adversary presents the entire
instance to A is vmaxB/

∑B̄
i=1 v̄i.

Moreover, we assume during the above process, b-th (b ≥ λ̄) and
(b + 1)-th packets are admitted in the j-th and j′-th round, respectively.
If j = j′, the adversary can stop right after A admits the b-th packet.
In this case, the profit obtained by A will be

∑b
i=1 v̄i, and that of OPT

will not be less than (v̄b+1− δ)B (buffering packets during the (j−1)-th
round). In this case, the profit ratio can be (v̄b+1 − δ)B/

∑b
i=1 v̄i. When

j 6= j′, the adversary can stop the input instance right after the (j′ − 1)-
th round and get a profit ratio of (v̄b+1 − δ)B/

∑b
i=1 v̄i. Thus, for any

λ̄ ≤ b ≤ B̄ − 1, we can always construct an instance under which the
profit ratio between OPT and A is at least (v̄b+1 − δ)B/

∑b
i=1 v̄i.
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With δ → 0, we have

CR(A) ≥ max
λ̄≤b≤B̄

{
lim
δ→0

(v̄b+1 − δ)B∑b
i=1 v̄i

,
vmaxB∑B̄
i=1 v̄i

}

≥ max
λ̄≤b≤B̄

{
v̄b+1B∑b
i=1 v̄i

,
vmaxB∑B̄
i=1 v̄i

}
≥ max

λ̄≤b≤B

v̄b+1B∑b
i=1 v̄i

≥min
λ,vi

max
λ≤b≤B

vb+1B∑b
i=1 vi

= CR(sBuffAlg),

where in the penultimate inequality, we set v̄i = v̄B̄ for B̄ < i ≤ B and
v̄B+1 = vmax.

This completes the proof. 2

In [147], an online optimal solution to the online knapsack problem
is derived by assuming that the item size is much smaller than the
capacity of the knapsack. Using the solution in [147], a similar result
can be obtained to problem (1.1) by allowing the number of packets to
take fractional values. The following corollary restates this result
simply for the convenience of the readers since it is required in our
subsequent analysis for the general problem.

Corollary 2.5.1: In the special case of allowing the number of packets
to take fractional values, the optimal competitive ratio of Problem (1.1)
is

CR(sBuffAlg) = ln θ̃ + 1,

and the optimal threshold function g(b) : [0, B]→ [vmin, vmax] (which is
a continuous analogue of the discrete threshold values) is

g(b) =

{
vmin, b ≤ B

ln θ̃+1
,

vmine
(ln θ̃+1) b

B
−1, otherwise.

(2.7)

2.5.2 A Threshold-Based Strategy for the General Problem

In this section, we apply the threshold-based strategy to the original
problem which allows packet departure, i.e., u(t) ≥ 0, t ∈ T . In order
to analyze the performance of the threshold-based strategy, we can
divide the investigated time period into multiple cycles.

Definition 2.5.1: Given a threshold-based online algorithm thBuffAlg,
a cycle is defined to be the time interval beginning and ending whenever
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the buffer under thBuffAlg becomes empty. Specifically, let
0 ≤ t1 < t2 < · · · < tn ≤ T denote the time slots when the queue
length under thBuffAlg goes to 0, then the time interval
[ti + 1, ti+1], i ∈ {1, 2, . . . , n− 1} forms a cycle.

The following observation implies that the analysis for the competitive
ratio can be conducted within a cycle.

Lemma 2.5.4: Let ω be a worst instance and C be any cycle realized by
thBuffAlg under ω, then the profit ratio between OPT and thBuffAlg
during C is equal to the competitive ratio of thBuffAlg.

Proof of Lemma 2.5.4. Assume under the worst instance
ω = [(v(τ), u(τ))]τ∈T , there is a cycle C = [s + 1, t] during which the
maximum profit ratio is smaller than CR (thBuffAlg). At time slots s
and t, the buffer under thBuffAlg is emptied. We just increase u(s) and
u(t) by a large number δ such that the buffer under OPT also becomes
empty. This operation never changes subsequent operations of
thBuffAlg, as well as the obtained profit. Also, the profit obtained by
OPT is unchanged since ω has resulted in the worst-case profit ratio.
Then, we can “remove” the input segment over C and present the
instance
[(v(τ), u(τ))]τ=1:s−1 + [(v(s), u(s) + δ)] + [(v(τ), u(τ))]τ=t+1:T to
thBuffAlg and get a larger profit ratio, contradicting the assumption on
the worst instance. Similarly, if the profit ratio during one cycle is
larger than the competitive ratio, presenting the following input
instance to thBuffAlg yields the increase of the profit ratio:

[(v(τ), u(τ))]τ=1:s−1+[(v(s), u(s)+λ)]+ωC×2+[(v(τ), u(τ))]τ=t+1:T ,

where ωC = [(v(τ), u(τ))]τ=s+1:t−1 + [(v(t), u(t) + δ)]. This also
contradicts the assumption on the worst instance. 2

Based on the above lemma, our analysis on the competitive ratio of
thBuffAlg can be reduced to instances which only contain one cycle. By
ΩthBuffAlg
b , we denote the subset of single-cycle input instances with the

maximum queue length being b. The following lemma characterizes the
local competitive ratio within such a subset.

Lemma 2.5.5: Assume the threshold-based online algorithm thBuffAlg
is equipped with a series of non-decreasing threshold values vi satisfying
v1 = vmin. If the length of the first step is λ, we have:

1. For the subset ΩthBuffAlg
b where b < λ, the local competitive ratio is

1.
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2. For b ≥ λ, the local competitive ratio within the subset ΩthBuffAlg
b is

CRb(thBuffAlg) ≤
vb+1B +

b∑
i=l+1

vi

b∑
i=1

vi

. (2.8)

Inequality (2.8) holds with equality when the local competitive
ratio within ΩthBuffAlg

b satisfies CRb(thBuffAlg) ≥ CRb′(thBuffAlg)
for all b′ < b.

By Lemma 2.5.5, we have

CR(thBuffAlg) = max
b=λ,λ+1,...,B

CRb(thBuffAlg)

= max
b=λ,λ+1,...,B

vb+1B +
b∑

i=λ+1

vi

b∑
i=1

vi

.

Similar to Lemma 2.5.3, the next lemma explains how to optimize
the threshold values vi.

Lemma 2.5.6: If the length of the first step l is determined,
CR(thBuffAlg|λ) maximizes if and only if the following equalities hold:

vλ+1B

vminλ
=
vλ+2B + vλ+1

vminλ+ vλ+1

= · · · =
vBB +

B−1∑
i=λ+1

vi

vminλ+
B−1∑
i=λ+1

vi

=

vmaxB +
B∑

i=λ+1

vi

vminλ+
B∑

i=λ+1

vi

.

Theorem 2.5.3: Assuming λ is given, the minimum competitive ratio of
thBuffAlg, denoted by γλ satisfies

Bθ̃

γλλ
=

(
γλ(B − λ)

B2
+ 1

)B−λ
. (2.9)

Assuming λ∗ is the optimal solution to minimize the above function and
γ∗ is the corresponding optimal value, then the optimal threshold values
are

vλ∗+1 = γ∗vminλ
∗

B
,

vλ∗+i+1 = vλ∗+1

(
vmax

vλ∗+1

) i
B−λ∗

, i = 1, 2, . . . , B − λ∗.
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Proof of Theorem 2.5.3. By induction, we can derive that

vmin

vλ+1

Bλ

B − λ
vi+1 − vi

vi
= 1, i = λ+ 1, λ+ 2, . . . , B. (2.10)

That implies

vλ+2 − vλ+1

vλ+1

=
vλ+3 − vλ+2

vλ+2

= · · · = vB+1 − vB
vB

,

so

vi+1

vi
=
(
vmax

vλ+1

) 1
B−λ

, i = λ+ 1, λ+ 2, . . . , B. (2.11)

Moreover, according to Lemma 2.5.6, we have

vλ+1 =
γλvminλ

B
.

Combining the above equation and (2.11), we can obtain the
threshold values shown in the theorem.

According to Equation (2.10), we have

vλ+1

vmin

=

[(
vmax

vλ+1

) 1
B−λ

− 1

]
Bλ

B − λ.

Replacing vλ+1 with γλvminλ/B yields Equation (2.9). 2

Remark 2.5.1: By Equation (2.9), one can conclude that when B is

large enough, the competitive ratio approximates (2+ln θ̃)+
√

ln2 θ̃+4 ln θ̃

2
,

which is superior to the existing results (edln θ̃e in [26] and
ln θ̃ + 2 +O(ln2 θ̃/B) in [25]).

2.6 Optimal Randomized Online Algorithm

In the discrete case, the deterministic online algorithm can only admit
or reject an incoming packet. It is beneficial for online algorithms to
buffer a fraction of the packet if this is a viable option. Motivated by
this observation, we focus on finding an optimal online algorithm for the
fractional admission model. In this section, by considering fractional
model, we design a novel online strategy and show it achieves the lower
bound for competitive ratio of ln θ̃+1. Then, in Section 2.6.3, we extend
the result into the original discrete setting.
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2.6.1 Optimal Online Algorithm for the Fractional Admission Model

In Section 2.5.1, we devised an algorithm for a simplified online
problem without packet departure over the time horizon. We showed
that for the discrete and fractional cases, the optimal competitive ratio
can be obtained by a threshold-based algorithm, which maintains a
fixed threshold value for each state of the queue length. For the general
case with packet departure, the available space for buffering packets
changes over time. Thus, the threshold-based strategy whose threshold
only depends on the queue length may yield a suboptimal competitive
ratio. In this section, we aim to find the optimal competitive ratio for
the general case. Toward this goal, we propose a novel online algorithm
fBuffAlg. In a nutshell, we introduce virtual sub-queues which track the
history of packet departures and maintain a threshold-based strategy for
each virtual sub-queue. The details of fBuffAlg are as follows.

State of fBuffAlg

Without loss of generality, we assume the initial state of the queue length
is 0. fBuffAlg initially sets B empty sub-queues, each of which with
capacity 1. This corresponds to the initial buffer budget of B. Note that
packet departure may or may not occur at any time slot. Hence, let ti,
i = 1, 2, . . . , h denote the time slots that at least one packet departure
occurs. If there are u(ti) packets departure in slot ti, then u(ti) virtual
sub-queues, each with capacity 1, will be created by the end of slot ti.
When the original queue length b(t) becomes 0, the virtual sub-queues
created due to packet departures is deleted and the queue lengths of the
initial B sub-queues are set to 0. Let W be a sufficiently large integer
value. A packet is conceptually divided into W equal sub-packets. We
denote the discretized queue length of the i-th sub-queue by b̄i(t) which
can only take integer values between 0 and W . Using the above setups,
we define fBuffAlg algorithm by extending the original system state b(t)
to a state vector b̄(t) = [b̄1(t), b̄2(t), . . . , b̄N(t)], where N is the number
of virtual sub-queues at time slot t. It is easy to see that b(t) equals to∑N

i=1 b̄i(t)−N +B. Figure 2.3 depicts the state of fBuffAlg at time slot
t.

Admission Policy of fBuffAlg

In fBuffAlg, admission policy determines the fraction of the packet to be
admitted, i.e., the number of sub-packets in [0,W ] that must be admitted.
The number of admitted sub-packet depends on the system state b̄(t).
Toward this, for each sub-queue i, fBuffAlg maintains a fixed threshold
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Initial Stage

1( )u t
2( )u t

Added sub-queues 
at 1t

Added sub-queues 
at 2t

( )1b t ( )2b t ( )Bb t

Fig. 2.3: Description of the state of the fBuffAlg algorithm at time slot t.

function gW (b̄i) that can be used to determine the number of admitted
sub-packets of an arriving packet. The function is defined by

gW (b̄i) =

{
vmin,

b̄i
d
≤ 1

ln θ̃+1
,

vmine
(ln θ̃+1) b̄iW −1, otherwise.

(2.12)

Equation (2.12) is a scaled version of (2.7). Based on Equation (2.12),
the number of sub-packets that the i-th sub-queue can admit, denoted by
āi(t) is determined by

āi(t) = max ε
s.t. gW (b̄i(t− 1) + ε) ≤ p(t),
var. ε ∈ N.

By the above admission policy, the value of admitted sub-packets is
guaranteed to be larger than the threshold of each sub-queue at any time
slot. Then, the total number of aggregated sub-packets is simply the
aggregation of sub-packets in each sub-queue truncated by W , i.e.,

ā(t) = min

{
n∑
i=1

āi(t),W

}
.

The value of ā(t) is the admitted amount of an arriving packet by
fBuffAlg under state b̄(t − 1) and packet value v(t). We use ḡW (b̄) to
denote the minimum threshold for fBuffAlg to admit portion of packet
when the algorithm state is b̄, i.e.,

ḡW (b̄)
def
= min

i=1,2,··· ,N
gW (b̄i + 1).

ḡW (b̄) only depends on the algorithm state b̄.
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Allocation Policy of fBuffAlg

Given that the number of sub-packets to be buffered is ā(t), fBuffAlg
allocates these sub-packets among the N sub-queues in a water-filling
way (as shown in Figure 2.4). In this way, the value of an allocated
sub-packet is always larger than the threshold value of the sub-queue.
Specifically, the allocation algorithm is as follows.
Algorithm 2.1 Allocation Policy of fBuffAlg (Water-filling policy)
1 for i = 1 to ā(t)
2 I ← The sub-queues with smallest queue length
3 Allocate i-th sub-packet to the sub-queue with the smallest index in I, and increase its

queue length by 1.

Sub-packets to 
be allocated

sub-queues having been set up

 Sub-packets having 
been buffered

Fig. 2.4: Allocate admitted sub-packets in a water-filling manner.

2.6.2 Performance Analysis of fBuffAlg

When a packet departs, a unit of buffer space is released and the available
buffering budget increases accordingly. The conceptual idea of fBuffAlg
is to build a virtual sub-queue for each unit of released buffering space.
An arriving packet is broken into multiple sub-packets and admitted to
the original buffer and sub-queues under a thresholding policy such that
the packet value of a buffered sub-packet is not less than the threshold.
In order to analyze the competitive ratio of fBuffAlg, we face fBuffAlg
with a more “powerful” adversary that can transmit a portion of packet
aiming to construct a worse instance. Let w(t), 1 ≤ w(t) ≤ W denotes
the number of sub-packets transmitted to the switch node at time slot
t. Under the powerful adversary, an input instance has the following
extended form

[ω̄(t) = (v(t), u(t), w(t))]t∈T ,

where v(t) and u(t) are as the previous exogenous inputs. Note that
when w(t) = W, t ∈ T , the input instance will be reduced to the
previous one defined in Section 2.4. Thus, the competitive ratio of
fBuffAlg when faced with the powerful adversary characterizes an
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upper bound for the competitive ratio of fBuffAlg (under a standard
adversary defined in Section 2.4).

By analyzing the admission and allocation policies of fBuffAlg, we
observe the following two critical properties:

1. When queue lengths are equal, fBuffAlg will allocate the
sub-packet to the sub-queue with smaller index. Thus, at any slot
t, the following inequalities always hold:

b̄1(t) ≥ b̄2(t) ≥ · · · ≥ b̄N(t).

2. When a sub-packet is allocated to a sub-queue, the packet value is
always larger than or equal to the threshold value of the sub-queue.

Under the powerful adversary, the following Lemma characterizes a
critical property of the worst instance for fBuffAlg.

Lemma 2.6.1: Assume ω̄ = [ω̄(t) = (v(t), u(t), w(t))]t∈T is a worst
instance for fBuffAlg under the powerful adversary. Then, at any time
slot t when fBuffAlg buffers portion of packet, v(t) is exactly equal to
the threshold of fBuffAlg, i.e.,

v(t) = ḡW (b̄(t− 1)).

Proof of Lemma 2.6.1. Assume during the worst instance, there exists
a time slot that v(t) is larger than the threshold value ḡW (b̄(t − 1)) and
ā(t) sub-packets are admitted by fBuffAlg. We first present the instance
segment [(v(1), u(1), w(1)), (v(2), u(2), w(2)), . . . , (v(t − 1), u(t −
1), w(t − 1))] to fBuffAlg. After that, we further present the instance
segment [(ḡW (b̄(t − 1)), 0, 1), (v(t), 0, ā(t) − 1)] to fBuffAlg, and the
number of buffered sub-packets is equal to ā(t). In this way, the profit
earned from the buffered ā(t) sub-packets decreases by
[v(t)− ḡW (b̄(t− 1))]/W . After that, we present the remaining instance
segment [(v(t + 1), u(t + 1), w(t + 1)), (v(t + 2), u(t + 2), w(t +
2)), . . . , (v(T ), u(T ), w(T ))] to fBuffAlg. Under the above instance, the
profit earned by OPT decreases by at most [v(t) − ḡW (b̄(t − 1))]/W ,
which is also the decrement amount of fBuffAlg. In this way, we
construct a new instance that results in a larger competitive ratio,
contradicting the assumption on the worst instance. 2

The next Lemma implies that the competitive analysis of fBuffAlg
can be conducted within a cycle (see Definition 2.5.1).

Lemma 2.6.2: Let ω̄ be a worst instance and C be a cycle realized by
fBuffAlg under ω̄, then the profit ratio during C is equal to the
competitive ratio of fBuffAlg.
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The proof is analogous to that for Lemma 2.5.4 and is omitted. The
following theorem shows the competitive ratio of fBuffAlg.

Theorem 2.6.1: Under the fractional admission assumption, fBuffAlg
achieves the competitive ratio

[
1 + (ln θ̃ + 1)θ̃/W

]
· (ln θ̃ + 1) .

Proof of Theorem 2.6.1. We assume there is a worst instance for
fBuffAlg which only contains one cycle and at time t, the state of
fBuffAlg is as shown in Figure 2.3. By ti, we denote the time slot at
which the i-th sub-queue is built up. From the allocation policy of
fBuffAlg, we have

b̄1(t) ≥ b̄2(t) ≥ · · · ≥ b̄N(t).

During [ti+1, t], the threshold values of fBuffAlg are always less than or
equal to gW (b̄i(t) + 1). Thus, during the worst instance, packet values in
[ti + 1, t] are always less than or equal to gW (b̄i(t) + 1). Otherwise, the
packet value will be larger than the threshold of fBuffAlg, contradicting
Lemma 2.6.1.

Above analysis demonstrates that under the worst instance for
fBuffAlg, packet values are not larger than gW (b̄i(t) + 1) after the i-th
sub-queue is built up. Thus, the profit earned by OPT over [1, t] is less
than or equal to

ProfOPT ≤ gW (b̄1(t) + 1) + gW (b̄2(t) + 1) + · · ·+ gW (b̄N(t) + 1).(2.13)

On the other hand, according to the admission policy of fBuffAlg, a sub-
packet is admitted by a sub-queue only when its packet value is larger
than or equal to the threshold, so the aggregated profit of the buffered
sub-packets in the i-th sub-queue is not less than

∑b̄i(t)
k=1 gW (k). By the

property of the threshold function gW (see the analysis in Section 2.5.1),
we have

b̄i(t)∑
k=1

gW (k) ≥ gW
(
b̄i(t)

)
ln θ̃ + 1

·

Hence, the profit earned by fBuffAlg over [1, t] is larger than or equal to

ProffBuffAlg ≥
gW (b̄1(t)) + gW (b̄2(t)) + · · ·+ gW (b̄N(t))

ln θ̃ + 1
· (2.14)
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Putting together Equations (2.13) and (2.14), we have

CR(fBuffAlg)

≤ gW (b̄1(t) + 1) + gW (b̄2(t) + 1) + · · ·+ gW (b̄N(t) + 1)

gW (b̄1(t)) + gW (b̄2(t)) + · · ·+ gW (b̄N(t))
· (ln θ̃ + 1)

≤ max
1≤i≤n

gW (b̄i(t) + 1)

gW (b̄i(t))
· (ln θ̃ + 1)

≤
[

1 + (ln θ̃ + 1)
θ̃

W

]
· (ln θ̃ + 1).

The last inequality is according to the fact that the largest derivative of
gW (b̄i), 0 ≤ b̄i ≤ W is vmin(ln θ̃ + 1)θ̃/W and g(b̄i) ≥ vmin. 2

Corollary 2.6.1: Assuming W → ∞, the competitive ratio of fBuffAlg
approximates the lower bound of ln θ̃ + 1.

Remark 2.6.1: We note the following property concerning the
admission amount when W → ∞. For notational convenience, let us
denote by b̃i(t) the actual amount of packet in the i-th sub-queue and
use ãi(t) to denote the actual amount of packet that can be admitted by
the i-th sub-queue. According to the admission policy of fBuffAlg, we
can deduce that when W → ∞, the amount of packet that the i-th
sub-queue can admit is

ãi(t) =

[
ln v(t)

vmin
+ 1

ln θ̃ + 1
− b̃i(t− 1)

]+

.

Similarly, the actual admitted amount at time slot t, denoted by
afBuffAlg(t), can be obtained by truncating the aggregation of ãi(t) for all
sub-queues. That is,

afBuffAlg(t) = min

{
n∑
i=1

ãi(t), 1

}
.

Then, a fraction of afBuffAlg(t) of the packet will be allocated among sub-
queues in a water-filling way as shown in Figure 2.4.

2.6.3 Optimal Randomized Strategy for the Discrete Admission
Model

In this section, we extend the fractional algorithm in the previous
section and design a randomized online algorithm for the general
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discrete model. Intuitively, the expected competitive ratio can be
improved to be equal to that of fBuffAlg by properly designing the
buffering probability. In the following, we introduce a randomized
strategy rBuffAlg (as for randomized online algorithm) which can attain
this goal by online rounding. Given that the amount of packet buffered
by fBuffAlg assuming W → ∞ at time slot t is afBuffAlg(t), we propose
the following operation rules for rBuffAlg.

At time slot t, our proposed randomized rounding algorithm
computes the admission probability according to the admission amount
of fBuffAlg with W →∞ (summarized as Algorithm 2.2).
Algorithm 2.2 Randomized Rounding Algorithm rBuffAlg, at slot t
1 prob(t)← 0 the admission probability of packet at slot t
2 if bbfBuffAlg(t− 1) + afBuffAlg(t)c = bbfBuffAlg(t− 1)c do
3 if brBuffAlg(t− 1) = bbfBuffAlg(t− 1)c do

4 prob(t)← afBuffAlg(t)

bbfBuffAlg(t− 1)c+ 1− bfBuffAlg(t− 1)
(2.15)

5 else
6 prob(t)← 0
7 end if
8 end if
9 if bbfBuffAlg(t− 1) + afBuffAlg(t)c = bbfBuffAlg(t− 1)c+ 1 do
10 if brBuffAlg(t− 1) = bbfBuffAlg(t− 1)c do
11 prob(t)← 1
12 else

13 prob(t)← bfBuffAlg(t) + bfBuffAlg(t− 1)− bbfBuffAlg(t− 1)c − 1

bfBuffAlg(t− 1)− bbfBuffAlg(t− 1)c
14 end if
15 end if
16 Admit the packet with probability prob(t)

Before analyzing the competitive ratio of above randomized policy,
we first provide a general lower bound for the competitive ratio of
randomized online algorithms. Subsequent analysis demonstrates that
the obtained lower bound is tight.

Theorem 2.6.2: The competitive ratio for any randomized online
algorithm is lower bounded by ln θ̃ + 1.

Proof of Theorem 2.6.2. Given the initial state of the buffer being
empty, an adversary can present enough packets with packet value
v̄1 = vmin to a randomized online algorithm R. It is obvious that the
number of packets admitted by R will increase and definitely converge
to some constant value, denoted by λ1. Note that λ1 can be regarded as
a random variable for a randomized online algorithm. After that, we
further present enough packets with packet value v̄2 > v̄1 to R, and
assume ultimately there are λ2 packets buffered. We repeat this process
for n times and let v̄n = vmax. The adversary can choose to stop the
above input instance at any time. Hence, for such an input instance, it is
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possible for any R to achieve a profit ratio equal to
(v̄iB)/

(∑i
k=1 v̄kλk

)
, i = 1, 2, . . . , n. The expected competitive ratio

is larger than or equal to the maximum one among those ratios. That is

ECR(R) ≥ max
i=1,2,...,n

v̄kB

E

[
i∑

k=1

v̄kλk

] = max
i=1,2,...,n

v̄kB
i∑

k=1

v̄kE [λk]

.

Obviously,
i∑

k=1

E [λk] ≤ B. From the previous analysis, we can verify

that
max

i=1,2,...,n

v̄iB∑i
k=1 v̄kE [λk]

≥ ln θ̃ + 1,

and thus ECR(R) ≥ ln θ̃ + 1, the proof is completed. 2

Lemma 2.6.3:
⌊
bfBuffAlg(t)

⌋
≤ brBuffAlg(t) ≤

⌊
bfBuffAlg(t)

⌋
+ 1.

Proof of Lemma 2.6.3. Assuming the initial state of the buffer is empty,
we proceed to prove by induction. For the base case we have⌊

bfBuffAlg(t)
⌋
≤ brBuffAlg(t) ≤

⌊
bfBuffAlg(t)

⌋
+ 1,

which holds when t = 0.
Now, assume the lemma holds for t ≤ k, i.e., brBuffAlg(t) is equal

to either
⌊
bfBuffAlg(k)

⌋
or
⌊
bfBuffAlg(k)

⌋
+ 1. As illustrated in Figure 2.5,

when brBuffAlg(t) lies at point “A”, the arriving packet is buffered with
probability 0; and when brBuffAlg(t) lies at point “B”, the arriving packet
is buffered with probability 1.

Queue Length

Queue Length

Α

Β

( ) ( ) ( )fBuffAlg fBuffAlg fBuffAlg :b k a k b kê ú ê ú+ =ê ú ê úë û ë û

( ) ( ) ( )fBuffAlg fBuffAlg fBuffAlg 1:b k a k b kê ú ê ú+ = +ê ú ê úë û ë û

( )fBuffAlg 1a k+ +

( )fBuffAlgb kê úê úë û ( )fBuffAlgb k ( )fBuffAlg 1b kê ú +ê úë û

( )fBuffAlgb kê úê úë û ( )fBuffAlgb k ( )fBuffAlg 1b kê ú +ê úë û

( )fBuffAlg 1a k+ +

Fig. 2.5: The illustration of the proof for Lemma 2.6.3.

Putting together the observations in Figure 2.5, the following
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inequalities hold:⌊
bfBuffAlg(k) + afBuffAlg(k + 1)

⌋
≤brBuffAlg(k) + arBuffAlg(k + 1)

≤
⌊
bfBuffAlg(k) + afBuffAlg(k + 1)

⌋
+ 1.

Hence, [⌊
bfBuffAlg(k) + afBuffAlg(k + 1)

⌋
−u(k + 1)

]+
≤
[
brBuffAlg(k) + arBuffAlg(k + 1)− u(k + 1)

]+
≤
[⌊
bfBuffAlg(k) + afBuffAlg(k + 1)

⌋
+ 1−u(k + 1)

]+
,

for u(k + 1) ∈ N, so⌊
bfBuffAlg(k + 1)

⌋
≤ brBuffAlg(k + 1) ≤

⌊
bfBuffAlg(k + 1)

⌋
+ 1.

This completes the proof. 2

Lemma 2.6.4: E
[
arBuffAlg(t)

]
= afBuffAlg(t).

Proof of Lemma 2.6.4. We prove by induction again. Assume the initial
state of the queue length is 0, i.e., bfBuffAlg(0) = brBuffAlg(0) = 0. If
afBuffAlg(1) < 1, then⌊

bfBuffAlg(0) + afBuffAlg(1)
⌋

=
⌊
bfBuffAlg(0)

⌋
.

Hence, according to Equation (2.15), the packet is admitted with
probability

afBuffAlg(1)

bbfBuffAlg(0)c+ 1− bfBuffAlg(0)
= afBuffAlg(1).

If afBuffAlg(1) = 1, then⌊
bfBuffAlg(0) + afBuffAlg(1)

⌋
=
⌊
bfBuffAlg(0)

⌋
+ 1.

The arriving packet will be admitted with probability 1. So when t = 1,
we have E

[
arBuffAlg(t)

]
= afBuffAlg(t) and also

E
[
brBuffAlg(t)

]
= bfBuffAlg(t).

Now, assume E
[
arBuffAlg(t)

]
= afBuffAlg(t) and

E
[
brBuffAlg(t)

]
= bfBuffAlg(t) hold for t ≤ k. Based on Lemma 2.6.3, we

know that brBuffAlg(t) is equal to either
⌊
bfBuffAlg(t)

⌋
or
⌊
bfBuffAlg(t)

⌋
+ 1.

When E
[
brBuffAlg(k)

]
= bfBuffAlg(k), we can deduce that brBuffAlg(k) is

equal to
⌊
bfBuffAlg(k)

⌋
with probability

⌊
bfBuffAlg(k)

⌋
+ 1 − bfBuffAlg(k)

and equal to
⌊
bfBuffAlg(k)

⌋
+ 1 with probability
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bfBuffAlg(k) −
⌊
bfBuffAlg(k)

⌋
. By verifying the operations of rBuffAlg, we

can easily get that E
[
arBuffAlg(k + 1)

]
= afBuffAlg(k + 1). Moreover, if

bfBuffAlg(k) + afBuffAlg(k + 1) ≥ u(k + 1), we must have
brBuffAlg(k) + arBuffAlg(k + 1) ≥ u(k + 1) according to Lemma 2.6.3. In
this case, we have

E
[
brBuffAlg(k + 1)

]
= E

[
[brBuffAlg(k) + arBuffAlg(k + 1)− u(k + 1)]+

]
= E

[
brBuffAlg(k) + arBuffAlg(k + 1)− u(k + 1)

]
= E

[
brBuffAlg(k)

]
+E

[
arBuffAlg(k + 1)

]
− u(k + 1)

= bfBuffAlg(k + 1).

If bfBuffAlg(k) + afBuffAlg(k + 1) ≤ u(k + 1), we must have brBuffAlg(k) +
arBuffAlg(k + 1) ≤ u(k + 1). In this case, brBuffAlg(k + 1) = bfBuffAlg(k +
1) = 0. Then, we can conclude that E

[
arBuffAlg(t)

]
= afBuffAlg(t) and

E
[
brBuffAlg(t)

]
= bfBuffAlg(t) hold for t = k+1. By concluding the above

all, we can get the final results as desired. 2

Theorem 2.6.3: rBuffAlg achieves the optimal competitive ratio, i.e.,
ln θ̃ + 1.

Proof of Theorem 2.6.3. As shown in Corollary 2.6.1, when W →∞,
the competitive ratio of fBuffAlg achieves ln θ̃ + 1. Moreover, from
Lemma 2.6.4, we have that the expected amount of admitted packets
under rBuffAlg is always equal to that of fBuffAlg for all times, and thus
rBuffAlg achieves the same competitive ratio as fBuffAlg with W →∞.
This proves the optimality of rBuffAlg. 2

In this chapter, we studied the classic non-preemptive QoS buffer
management problem, where its optimal online solution was an open
problem for a decade. By relaxing the original discrete model to a
fractional setting, we proposed a novel online algorithm that maintains
a series of virtual sub-queues to record the available buffer budget over
time. We proved it achieves the optimal competitive ratio. By devising
a randomized rounding scheme, we then extended the fractional
algorithm into the original discrete setting. Our analysis demonstrated
that the randomized scheme achieves the optimal competitive ratio of
ln θ̃ + 1. Last but not the least, the problem is of interest in a general
admission control problem that could be applied to the state-of-the-art
applications. As an example, we stress the value-based resource
allocation in data centers with limited computation capacities, in which
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the jobs must be either admitted or rejected upon their arrival based on
their values and the utilization of the servers.

2 End of chapter.



3. ONLINE TRADING I: ONLINE OFFERING OF RENEWABLE
SUPPLIES

The Online QoS Buffer Management Problem studied in Chapter 2 is
a common problem and closely related to lots of practical problems in
engineering and operation research. In addition to the basic setting of
the Online QoS Buffer Management problem, we also investigate the
recent problems which generalize the profit maximization problem in
a deregulated market. Specifically, the extension focuses on designing
bidding strategies that, with the goal of maximizing the profit, determine
the offering price and volume, for SRGENCO that participates in hour-
ahead market which adopts an auction mechanism.

3.1 Problem Background

Renewables are attractive in that they are clean, free (except capital and
maintenance cost), and inexhaustible. Integration of renewables into the
power system and particularly in the electricity market, however, is
challenging since their generation is uncontrollable, intermittent, and
unpredictable. A promising approach to facilitate renewable integration
and hedge against the uncertainty, is to equip the renewable plants with
the giant energy storage systems [52, 57]. Some examples are the
storage stations at Southern California (with capacity of 40MWh),
South Korea (16MWh), and Germany (15MWh) [1].

As depicted in Figure 3.1, we consider a scenario in which an
SRGENCO, like other traditional generation companies, participates in
hour-ahead market by (1) submitting the offer. After receiving the
offers, (2) the market operator matches the offers with the bids from the
demand-side and announces a market clearing price. If the offering
price of SRGENCO is less than the clearing price, (3) its offering
volume is considered as the commitment to the market for the next hour.
In turn, SRGENCO is paid according to the clearing price. If the
offering price of SRGENCO is less than the clearing price, its offering
volume is considered as the commitment to the market for the next hour.

Finding profit maximization offering strategy for a renewable
producer without storage is nontrivial due to the inherent uncertainty of
the renewables and dynamics in the market clearing price. In the
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Storage-assisted 
Renewable Generation Company

(SRGENCO)
Hour-ahead 
Electricity

 Market

1) Submit offer 

2) Announce clearing price 

3) Commit to market 

Fig. 3.1: The energy offering and storage management scenario.

presence of storage, the offering strategy is even more challenging
because of the additional design space enabled by the storage. More
specifically, SRGENCO can use the storage to absorb the uncertainty of
renewables and to compensate for the slots that the renewable output
cannot fulfill the commitment. However, the storage provides another
economic advantage. That is, it can shift the energy through absorbing
the renewable output during low price periods, and then discharging
during high price periods. In this way, designing profit maximization
offering strategy in the presence of storage comes with wider design
space than those without the storage and potentially can bring more
profit for SRGENCO.

The future inputs to the problem, i.e., the renewable output and the
clearing price, however, are unknown for SRGENCO when submitting
offer. This emphasizes the need for online solution design which is
challenging, since the problem is coupled across time due to the
evolution of the storage. We note that some similar problems have been
studied in literature using stochastic optimization approaches [87],
however, the solution approach thesis is different since it has no
assumption on the stochastic modeling of the future input. Our work
could be considered as an extension of conversion problems [122].
Different from the online optimization problem formulated in Chapter
2, the scenario introduced in this chapter involves an additional auction
process when the SRGENCO participates in the market.

3.2 Related Solutions

Due to the rapid increase in renewable energy deployment, recently,
there has been a significant attention on designing profit-effective
strategies for renewable producers to participate in the deregulated
electricity market. The profit efficiency of a renewable producer is
heavily restricted by the low accuracy of forecasting. [65] shows that
the error prediction costs can reach as much as 10% of total income of a



3. Online Trading I: Online Offering of Renewable Supplies 46

wind power producer. To this end, some works (e.g., [36, 123, 37, 41])
propose to bring the wind to the short-term market. We review the
related work in the following.

Renewable power producer without storage in electricity
market. In order to decrease the imbalance penalty imposed to wind
farm, [120] proposes a new stochastic programming approach to
generate optimal wind power production offers in short-term market. In
their work, a stochastic process is assumed for the forecasting error of
wind generation. In [41], Botterud et al., present a new model for
optimal trading of wind power in day-ahead electricity markets under
uncertainty in wind power output and market prices. In their model, the
settlement mechanisms in markets with locational marginal prices are
also taken into account. [37] also aims at designing optimal contract
offerings in a competitive two-settlement market. The authors further
take into account a different multi-period setting in which the wind
power producer has a recourse opportunity to adjust its day-ahead
commitment in an intra-day market. The performance of all above
studies largely degrades as the forecasting errors increase. Actually,
even with state-of-the-art forecasting methods, it is still complicated to
predict even one-hour ahead power generation of a wind turbine, as
well as the spot price in electricity market. In addition, none of the
aforementioned works leverage competitive design framework, as a
promising approach that relies on no stochastic modeling of market
price and renewable output.

Renewable power producer with storage in electricity market. In
order to mitigate the uncertainty of renewable production, several
studies [45, 101, 42, 75, 94] advocate the idea of deploying grid-scale
storage system to improve dispatchability of renewable power producer.
In addition, the storage can absorb surplus or inexpensive energy during
off-peak hours, and then discharge it during on-peak hours, when
electricity prices are typically high. In view of these considerations,
grid-scale storage has drawn the attention of power producers and
utilities to address many challenges they are dealing with, especially at
present, when the penetration of intermittent and inflexible renewable
sources is on the rise. As a fundamental technical difference with the
case without storage, in the case with storage, the offering strategy
design is more involved because of the evolution of storage level. [45]
proposes an hourly-discretized optimization algorithm to identify the
optimum daily operational strategy to be followed by the wind turbines
and the hydro generation pumping equipments, provided that a
wind-power forecasting is available. In [75], the optimization model is
formulated as a two-stage stochastic programming problem with two
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random parameters: market prices and wind generation. The optimal
offers for day-ahead spot market are the “here and now” decisions
while the optimal operation of the facilities are the recourse variables.
[42] and [101] optimize the size of hydrogen storage system which can
be used to jointly offer in the electricity market with the wind power
plant. The above studies are all constrained by long-term forecasting
errors, and their method cannot be extended to the case which involves
large time horizon.

The most related problem to our study is [94]. J. Kim and W. Powell
in [94] assume an auto-regressive energy generation process for the
wind, and then the Markov Decision Process can be derived to solve the
problem of making advance energy commitments in the presence of a
storage system. There is a fundamental technical difference between
the solution approach in our work and the one in [94]. Our approach is
competitive analysis, in which neither the exact values nor the
distribution of the future input is known in advance. In contrast, in [94],
the solution relies on specific stochastic modeling of the input. While
the performance of the solution in [94] largely depends on the accuracy
of underlying stochastic modeling for renewable output and market
price, our approaches characterizes the fundamental price of
uncertainty without any underlying stochastic modeling assumptions.

3.3 Summary of Results and Adopted Techniques

We focus on designing profit maximization offering strategies, i.e., the
strategies that determine the offering price and volume, for a
storage-assisted renewable power producer that participates in
hour-ahead electricity market. Designing the strategies is challenging
since (i) the underlying problem is coupled across time due to the
evolution of the storage level, and (ii) inputs to the problem including
the renewable output and market clearing price are unknown when
submitting offers. Following the competitive online algorithm design
approach introduced in Chapter 2, we first study a basic setting where
the renewable output and the clearing price are known for the next hour.
We propose sOffAlg, a simple online offering strategy that achieves the
best possible competitive ratio of O(log θ̂), where θ̂ is the ratio between
the maximum and the minimum clearing prices. Then, we consider the
case in which the clearing price is unknown. By exploiting the idea of
submitting multiple offers to combat price uncertainty, we propose
mOffAlg, and demonstrate that the competitive ratio of mOffAlg
converges to that of sOffAlg as the number of offers grows. Finally, we
extend our approach to the scenario where the renewable output has
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forecasting error. We propose gOffAlg as the generalized offering
strategy and characterize its competitive ratio as a function of the
forecasting error. Our trace-driven experiments demonstrate that our
algorithms achieve performance close to the offline optimal and
outperform a baseline alternative significantly.

By introducing the system model and problem formulation in
Sec. 3.4,

1. In Sec. 3.5, we study a basic setting where the exact values of
renewable output and the clearing price for the next slot are known
to SRGENCO before submitting the offer. We propose sOffAlg, a
simple online offering strategy, in which the offering volume is
calculated through a piecewise exponential/constant function of
the renewable output and the current storage level, as well as the
clearing price of the next slot. Following the technique used in
Chapter 2, our analysis demonstrates that sOffAlg achieves the
best possible competitive ratio of O(log θ̂).

2. In Sec. 3.6.1, we study the case where the clearing price is
unknown and propose mOffAlg. In mOffAlg, SRGENCO submits
multiple offers, each of which conveys a portion of total offering
volume, at different offering prices. Our analysis shows that the
competitive ratio of mOffAlg converges to the ratio of sOffAlg as
the number of offers grows. Moreover, in Sec. 3.6.2, our approach
is extended to the case where SRGENCO knows renewable output
with forecasting error. We propose gOffAlg as the generalized
offering strategy and characterize the competitive ratio as a
function of the maximum forecasting error.

3. In Sec. 4.6, by extensive numerical experiments based on
real-world traces, we show that our online offering strategies can
achieve satisfactory performance as compared to the offline
optimum. In addition, gOffAlg with 10% forecasting error
improves the profit of SRGENCO by 15% as compared to the
baseline scenario without storage. As notable observations, our
experiments demonstrate that when the market clearing price is
unknown, submitting 3 offers is sufficient to achieve almost the
same performance as the case that the market price is known.
Moreover, forecasting error of more than 20% significantly
degrades the performance results. In summary, our observations
demonstrate that, while the uncertainty in market price can be
effectively handled by multiple offer submissions, accurate
short-term renewable forecasting is vital for SRGENCO to obtain
a desired profit.
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Tab. 3.1: Summary of key notations Related to the Formulation of the Online Offering Problem
Notation Description

t Index of one-hour time slot
T The number of time slots, T ≥ 0
T Set T = {1, 2, . . . , T}
p(t) Market clearing price at t, pmin ≤ p(t) ≤ pmax

θ̂
The ratio between the maximum and the minimum
clearing prices, θ̂ = pmax/pmin

r(t) The renewable output of SRGENCO at t
S The capacity of storage system
ρc The maximum charging rate of storage system
ρd The maximum discharging rate of storage system

s(t)
The storage level at the beginning of t, see Equation
(4.1)

p̂(t) optimization variable, offering price of SRGENCO at t

ô(t)
optimization variable, offering volume of SRGENCO
at t

o(t)
Commitment volume of SRGENCO at t, see Equation
(3.1)

õ(t)
Over-commitment volume of SRGENCO at t, see
Equation (3.5)

R(t) The net profit of SRGENCO at t, see Equation (3.6)

3.4 Problem Formulation

3.4.1 Hour-Ahead Electricity Market

The hour-ahead electricity market operates on an hourly basis1 and
SRGENCO along with other generation companies submits its offer,
including the offering price and the offering volume (see Sec. 3.4.2 for
details), for the forthcoming hour shortly before the operation time. The
market operator (usually known as independent system operator, ISO)
matches the offers collected from the generation companies with the
received bids from the demand-side, e.g., utility companies. Then,
using a well-established double auction mechanism [109] it determines
the market clearing price for the next hour. The generation companies
with the offering prices less than the clearing price are successful and
the offering volume of electricity is considered as their commitment to
be sold on the market at the clearing price. Thus, successful offers sell
at prices at least as high as what they offered. All the remaining offers
fail since their offering prices are greater than the clearing price.

1 We emphasize that our model works in a short-term market in which the offers are submitted before
actual market operation in hourly or even shorter scales, e.g., 15 or 5 minutes ahead. For real examples we
refer to California ISO [3] and Nord Pool Markets [9]. For a survey of electricity markets, we refer to [63].
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Formally, we consider a time-slotted model, such that the time
horizon T is chopped into multiple slots with equal length, e.g., 1 hour,
each of which is indexed by t. Shortly before slot t, SRGENCO along
with other participants submits its offer, for the next slot. The ISO
determines the clearing price p(t) shortly after the participants submit
their offers and bids. We assume pmin ≤ p(t) ≤ pmax, and parameter θ̂
is defined as the ratio between the maximum and the minimum clearing
prices, i.e., θ̂ = pmax/pmin. We later use θ̂ to analyze our algorithms.

3.4.2 The properties of SRGENCO

There is a Storage-assisted Renewable GENeration COmpany
(SRGENCO) that produces electricity from the renewable sources such
as wind farm or solar plant. At the same time SRGENCO is equipped
with the storage systems to store the electricity for future commitment
with potentially higher price. On the other hand, the storage could be
discharged to compensate for the shortage of renewable output when
the commitment to the market is beyond the renewable output.

Renewable Output

The renewable output of SRGENCO at slot t is denoted by r(t) and
we do not rely on any specific stochastic model of r(t). In general, we
assume that SRGENCO does not know the exact amount of r(t) when
submitting the offer. Note that r(t) could be (i) directly committed to the
market, (ii) committed to the market partially while the residual is stored
on the storage, or (iii) entirely stored on the storage for future usage.

Offering Strategy

By offering strategy we mean the way that SRGENCO determines its
offer that includes:

(i) Offering price denoted as p̂(t) ∈ [pmin, pmax], i.e., the minimum
price at which SRGENCO desires to commit electricity to the
market.

(ii) Offering volume denoted as ô(t) ≥ 0, i.e., the amount of
electricity in MWh at which SRGENCO offers to the market at
slot t.2

2 Note that there is no upper bound for ô(t) because we assume that the market is big enough to absorb
the offering volume of SRGENCO entirely.
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We distinguish between the offering volume and the commitment
volume. After the clearing price p(t) is revealed, SRGENCO’s offer
may or may not be successful. If the offer is successful the offering
volume is considered as the commitment volume. Otherwise, there
would be no commitment. More specifically, we define x(t) as the
commitment volume of SRGENCO at slot t as

o(t) =

{
ô(t) if p(t) ≥ p̂(t),
0 otherwise. (3.1)

The goal of this study is to design an offering strategy for SRGENCO
to submit both offering price p̂(t) and offering volume ô(t) so as to
maximize its long-term profit.

Storage Model

We denote the maximum capacity of storage system of SRGENCO by
S and let ρc and ρd be its maximum charging and discharge rates,
respectively. In addition, let s(t) ∈ [0, S] be the storage level at the
beginning of slot t. Given the renewable output r(t) and the
commitment volume o(t), the evolution of the storage level of
SRGENCO is given by

s(t+ 1) =
[
s(t) + oc(t)− od(t)

]
S
, (3.2)

where
oc(t) = min

{
ρc,
[
r(t)− o(t)

]+}
, (3.3)

is the charging amount of the storage at slot t,

od(t) = min
{
ρd,
[
o(t)− r(t)

]+}
, (3.4)

and od(t) is the discharging amount of the storage at slot t. Moreover,
[.]+ and [.]S define the projections onto the positive orthant and set S =
[0, S], respectively. Since SRGENCO is empowered by the storage, the
commitment volume o(t) might be either greater, less, or equal to the
renewable output r(t). The evolution of the storage for each case is as
follows:

(i) r(t) = o(t): in this case the entire renewable output is committed
to the market and there is no change on the storage level, i.e., s(t+ 1) =
s(t).

(ii) r(t) > o(t): in this case, r(t)− o(t) > 0 represents the amount of
the surplus in the renewable output. Ideally, this surplus must be charged
into the storage for the forthcoming commitments. However, because of
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the charging rate ρc it may not be possible, which is indeed captured in
Equation (3.3).

(iii) r(t) < o(t): in this case not only the entire renewable output is
committed, but also the storage should contribute in fulfilling the
residual commitment, i.e., o(t) − r(t) > 0. Again, given the storage
level s(t), and the discharge rate ρd, the residual commitment may not
be satisfied.

Over-Commitment

Recall that SRGENCO does not know the exact renewable output r(t)
when submitting the offer, hence, it may fail to fulfill its commitment,
which we refer to as the over-commitment. Let us denote õ(t) as the
over-commitment volume at t expressed as

õ(t) =

[
o(t)−

(
r(t) + min

{
s(t), ρd

})]+

. (3.5)

Note that the maximum amount that SRGENCO can provide to the
market in operation time t is the aggregation of the renewable output
r(t) and the maximum amount that could be discharged from the
storage, i.e., min

{
s(t), ρd

}
. Since r(t) is unknown to SRGENCO

when submitting the offer, the commitment volume o(t) might be
greater than the amount that SRGENCO can really output, i.e.,
r(t) + min

{
s(t), ρd

}
.

3.4.3 Profit Model

By committing o(t), the profit obtained by SRGENCO is p(t)o(t). The
consequence of over-commitment is captured in profit model by
augmenting a penalty term. We adopt the penalty model in [94], in
which the unit penalty payment in over-commitment is linearly
proportional to the spot price p(t) in the form of α1p(t) + α2, where
α1, α2 ≥ 0 are constants.

Concluding above, the net profit obtained by SRGENCO at slot t,
denoted by R(t), is expressed as total profit subtracted by the (potential)
penalty of the over-commitment, i.e.,

R(t) = p(t)o(t)− (α1p(t) + α2)õ(t). (3.6)

3.4.4 Profit Maximization Problem

The objective is to maximize the cumulative profit obtained by
SRGENCO over time horizon T . The profit maximization offering
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strategy problem (OnOffer) is formally casted as

OnOffer max
∑
t∈T

R(t), s.t. Equation (4.1),

vars. p̂(t) ∈ [pmin, pmax], ô(t) ≥ 0, t ∈ T .

In offline scenario, in which the values of r(t) and p(t) as the
time-varying inputs to the problem are known ahead of time, the
problem is a linear one which is easy to solve. We refer to [45, 75] as
related works that study related problems in offline settings. We note
that in the offline scenario, the clearing prices are known to
SRGENCO, hence it is not required to submit the offering price
anymore. Consequently, the offering strategy reduces to announcing the
commitment volume directly. In this way, the problem could be
reformulated in an equivalent form with simpler structure.

In real-world, however, neither the renewable output r(t) nor the
clearing price p(t) are revealed to SRGENCO when submitting the
offer. Hence the focus in this thesis is to tackle the problem in online
setting, so, we formulate the problem in a way that SRGENCO submits
both offering price and offering volume. Solving OnOffer in online
setting is challenging, since the problem is coupled over the time in the
presence of the storage system. Recall that an important advantage of
incorporating storage towards profit maximization is to (fully or
partially) store the renewable supply in the storage when that market
price is low, and discharge it when the market price is high. Without
knowing the future values of p(t) and r(t), finding a profit
maximization offering strategy, that implicitly determines how
renewable supply and the stored electricity in the storage must be
consumed is challenging.

Finally, we note that in [87, 94], by using the Markov decision
process and approximate dynamic programming, different offering
strategies are proposed given a particular probabilistic model of the
clearing price and the renewable output. In these approaches, the
solution is obtained in the sense of probabilistic expectation. In
practice, however, real values might deviate from the underlying
probabilistic models. Our general approach as explained in Sec. 3.4.5
has no assumptions on the stochastic modeling of the unknown
time-varying inputs.

3.4.5 Online Competitive Algorithm Design

Our approach in this study is to follow competitive online algorithm
design and propose online offering strategies in which the decision is
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made based on only the current information, and without any
assumptions on the stochastic model on the renewable output and the
clearing price. Similar to the Online QoS Buffer Management Problem,
we use competitive ratio to evaluate how good is the online solution,
which is defined similar to that of Online QoS Buffer Management.

Definition 3.4.1: When the underlying problem is a profit maximization
one, for an online algorithm A, its competitive ratio is defined as the
maximum ratio between offline optimum and the profit obtained by A,
over all inputs, i.e.,

CR(A) , max
ω∈Ω

ROPT(ω)

RA(ω)
, (3.7)

where ω ∈ Ω refers to an instance of the online input parameters as

ω ,
[
ω(t) = (p(t), r(t))

]
t∈T , (3.8)

and Ω is the set of all input instances. Moreover, ROPT(ω) and RA(ω)
are the profits earned by the optimal offline solution and the online
algorithm A respectively, when the input is ω.

By this definition, the smaller the competitive ratio, the better the
performance is, since it guarantees no matter what the input is, the
online optimal strategy obtains the profit close to the offline optimum.

3.5 Optimal Online Offering Strategy with Accurate Single-Slot
Prediction

In this section, we propose online competitive algorithms for a
simplified version of OnOffer, in which the accurate data for the next
slot is available for both the renewable supply and the clearing price.
Later in Sec. 3.6, based on the insights from result of this section on the
simplified scenario, we tackle the general case and propose online
algorithms with neither the renewable supply nor the clearing price
known to SRGENCO when submitting the bids.

3.5.1 Simplified Problem with Accurate Single-Slot Prediction

For the sake of simplification in design, we first assume that both p(t)
and r(t) values for the next slot are revealed to SRGENCO, perhaps by
accurate short-term forecasting tools. In this way, OnOffer is largely
simplified in two ways:

(i) since p(t) is known, the offering strategy reduces to finding just the
commitment amount o(t). We relax this assumption in Sec.3.6.1.
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(ii) since r(t) is known, all the inputs and variables in Equation (3.5)
are known to SRGENCO when submitting the offer, hence the
over-commitment never happens, and the penalty term in the
objective of OnOffer vanishes. We relax this assumption in
Sec. 3.6.2.

Since in the new setting the price p(t) is known for the next slot, and
to be consistent with the general formulation, we set p̂(t) = p(t) and
following Equation (3.1), we get o(t) = ô(t). Then, given the above
assumptions, the only optimization variable would be the commitment
amount o(t). Now, we cast the simplified offering strategy problem
sOnOffer as

sOnOffer max
∑
t∈T

p(t)o(t)

s.t. o(t) ≤ min{s(t), ρd}+ r(t),

s(t+ 1) =
[
s(t) + oc(t)− od(t)

]
S
,

var : o(t) ≥ 0, t ∈ T ,

where the first constraint ensures that over-commitment never happens.
The second constraint involves the evolution of the storage level, where
xc(t) and xd(t) defined in Eqs. (3.3)-(3.4) represent the charging and
discharging amounts at time t.

3.5.2 Online Algorithm Design for sOnOffer

In this section, we propose a simple online offering strategy (sOffAlg)
to solve sOnOffer. Then we analyze its competitiveness and show that
sOffAlg achieves the best competitive ratio.

High Level Intuitions

Intuitively, a proper offering strategy must consider two issues in
decision making:

(i) the clearing price p(t) for the incoming slot t, the higher the price,
the more the SRGENCO is willing to commit,

(ii) the storage level s(t), if the storage level is almost full, SRGENCO
would be more interested to commit to have more capacity for the
forthcoming slots to store the electricity. On the other hand, if the
storage level is almost unoccupied, SRGENCO might keep this
electricity to commit with higher price in future slots.
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Putting together both clearing price and the storage level, we design our
algorithm following an adaptive threshold-based strategy, since it
adaptively changes the offering volume based on the current storage
level and the clearing price.

Main Algorithm

The main idea is to construct a function g(s) : [0, S] → [pmin, pmax].3

The input to function g(·) is the aggregation of the incoming renewable
supply r(t) and the current storage level s(t), projected into the
capacity of the storage, i.e., min{s(t) + r(t), S}. The output of g(·) is
the candidate offering price p̂(t) for SRGENCO at slot t. Note that
since we assume that SRGENCO knows clearing price p(t), it
calculates its candidate offering price p̂(t) and then based on the
comparison between these two values decides how to submit its offer.

The function g(·) should be decreasing, i.e., with the increase in the
current storage level, the offering price would be decreased (see
intuition (ii) above). Given function g(s), designing sOffAlg is rather
straightforward and is summarized as Algorithm 3.1. At slot t, first,
sOffAlg calculates candidate offering price p̂(t) based on the given
g(s). Then, it calculates the offering volume, whose details are
explained in Sec. 3.5.3. In Line 4, the offering price is set to p̂(t) = p(t)
to ensure that ô(t) is committed to market anyway. In the next part, we
explain how to design function g(s).
Algorithm 3.1 sOffAlg

[
p(t), r(t), s(t)

]
1 s+(t)← min{s(t) + r(t), S}
2 p̂(t)← g(s+(t)); see Eqs. (3.9) and (3.10) for the optimal design of g(s)
3 calculate ŝ(t) according to p̂(t), see Equation (3.13) and the following analysis for the

optimal design
4 p̂(t)← p(t)
5 submit offer

(
p̂(t), ŝ(t)

)
;

3.5.3 The Design of Function g(·)
On the Importance of Designing Function g(·)

First, we highlight that g(s) plays a critical role in sOffAlg, and the
competitive ratio can be improved by optimizing function g(s). To
illustrate the impact of g(s), we investigate the behavior of sOffAlg
under different structures of function g(s).

(i) g(s) = con, where con ∈ [pmin, pmax], is a constant value as
shown in Figure 3.5.2. If con > pmin, for the extreme case where p(t) <

3 To be consistent to the notations in this thesis, ideally we must denote the function as g(s(t)). However,
for simplicity we drop the slot index t for s(t).
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Fig. 3.2: Different structures of function g(s).

con, t ∈ T , it could be easily shown that the profit obtained by the
sOffAlg is always 0, thereby the competitive ratio would be ∞. On
the other hand, c = pmin, the competitive ratio is upper bounded by
pmax/pmin, which is not intriguing, since SRGENCO always commits
the electricity to the market regardless of the clearing price and, it loses
the opportunity of utilizing the potentials of storage in obtaining more
profit.

Consequently, an intelligent function design aims to improve the
competitiveness by reserving the storage for forthcoming slots with
higher clearing price. This goal can be achieved by adopting a
decreasing function.

(ii) g(s) = ks + pmax, where k < 0, as depicted in Figure 3.5.2.
Again, under the extreme case, CR(sOffAlg)→∞ if p(t) = pmin. Note
that this linear structure for g(s) is one example and any strictly
decreasing function with g(0) = pmax and g(S) = pmin behaves
similarly in the worst case.

(iii) Another smart alternative is a piece-wise function as depicted
in Figure 3.5.2. Function g(s) again is decreasing initially. However,
after the storage level reaches to a threshold value sth, g(s) changes to a
constant function, i.e.,

g(s) =

{
ĝ(s) if s ≤ sth,
pmin s ≥ sth.

(3.9)

Now, finding the optimal function g(s) reduces to finding ĝ(s) and
sth. In the next subsection, we introduce this function. Moreover in
Sec. 3.5.4, we analyze the competitiveness of the algorithm and prove
that the proposed function achieves the optimal CR.

Optimal Design of Function g(s)

The following theorem summarizes our main contribution in this section.
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Fig. 3.3: Illustration of calculating the offering volume ô(t) when p(t) > p̂(t).

Theorem 3.5.1: By setting ĝ(s) in Equation (3.9) as

ĝ(s) = pmine
(sth−s)sth

S(S−sth) , (3.10)

and sth as

sth = S −
(2 + log θ̂)S −

√
log2 θ̂ + 4 log θ̂S

2
> 0, (3.11)

sOffAlg achieves the optimal competitive ratio for sOnOffer as

CR(sOffAlg) =
(2 + log θ̂) +

√
log2 θ̂ + 4 log θ̂

2
. (3.12)

The proof is given as the competitive analysis in Sec. 3.5.4.
Remark. The theorem shows that the competitive ratio is

proportional to a logarithmic function of θ̂ as the ratio between the
maximum and minimum clearing prices. In practice, the scale of θ̂
varies from 2 to 50 in different markets, e.g., the clearing prices in
PJM [11] and NYISO [8] in July, 2015 is in [$13.9, $186.9] and
[$8.1, $43.1] per MWh. Given θ̂ = 50, the competitive ratio is around
5.74. Our experimental results depict much lower empirical ratios using
the real prices in different markets. For details we refer to Table 4.3.
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Calculating the Offering Volume

Given the optimal function g(s) in Theorem 4.4.1, we can finally find
the offering volume ô(t) as follows.

ô(t) = [r(t)− ρc]+, if p̂(t)>p(t),
s(t)+r(t)−min{sth, s(t)+ρc}, if p̂(t)=p(t)=pmin,
s(t)+r(t)−min{ĝ−1(p(t)), s(t)+ρc}, if p̂(t)<p(t),

(3.13)

where ĝ−1(p(t)) is well-defined since ĝ(s) defined in Equation (3.9) is
monotonically decreasing. More specifically, when p̂(t) > p(t),
SRGENCO stores the renewable supply as much as it can, considering
the charging rate constraint ρc, then, the residual is committed to the
market. If p̂(t) = p(t) = pmin, it means that the storage level exceeds
the threshold level sth, so, SRGENCO offers the minimum price pmin.
Since the market price is also pmin it commits the electricity until the
storage level reaches the threshold sth or s(t) + ρc, i.e.,
ô(t) = s(t) + r(t) − min{sth, s(t) + ρc}. Finally, the last situation is
p̂(t) < p(t), and p(t) > pmin. In this case, we are in the exponential part
of function g(s) and ô(t) is calculated as the total supply r(t) + s(t)
subtracted by min{ĝ−1(p(t)), s(t)+ρc}. An illustration of the offering
volume in this case when ĝ−1(p(t)) ≤ s(t) + ρc is depicted in
Figure 3.3. Finally, to capture the maximum discharge rate of the
storage, it suffices to modify offering volume as
ô(t) = min{r(t) + ρd, ô(t)}.

3.5.4 Competitive Analysis for Online Offering Algorithm

Our goal in this section is to design function g(s) (especially ĝ(s) and
sth in Equation (3.9)) so as to minimize the competitive ratio. By doing
so we prove the result in Theorem 4.4.1. To simplify our explanation
in this section and without loss of generality, we quantize the energy-
related variables o(t) and s(t) and the input parameters r(t) and S to
take the integer values. More specifically, considering that S is a real
number, we can define discretized capacity Sd as

Sd = S/δ, (3.14)

where δ is the unit of electricity. In this way, Sd belongs to integer
numbers. To avoid heavy notation complexity, however, in our analysis
in this section, we abuse notation S to denote the discretized Sd.
Similarly, we abuse o(t), s(t), and r(t) as their discretized versions.
Finally, we assume that initially the storage is full.
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An immediate consequence of the above discretization is that
function g(s) could be considered as a step function. We assume that
there are N steps for g(s), each of which indexed by i, and
i ∈ N = {1, 2, . . . , N}. Generally, the length of each step could be
different, hence, let us denote by λi as the length of step i. We can
characterize the threshold value sth defined in Equation (3.9) as the
storage capacity subtracted by the length of the last step, i.e.,

sth = S − λN . (3.15)

Moreover, we define Λi =
∑i

k=1 λk as the cumulative length until step
i. Since s ∈ [0, S] we get S = ΛN =

∑N
k=1 λk. Finally, we denote

pi = g(Λi) as the threshold price when the storage level is Λi under
function g(·). By this definition, we get p1 = pmax and pN = pmin.

By ssOffAlg
ω (t), we denote the storage level at slot t under sOffAlg,

and a particular instance ω as defined in Equation (3.8). Let us denote
the minimum storage level that sOffAlg reaches under ω as
s̄ ∈ {0, 1, . . . , S}, i.e., mint∈T s

sOffAlg
ω (t) = s̄. Then, using this

definition, we can partition the universal set of input instances Ω to
multiple subsets as follows

Ω =
⋃

s̄∈{0,1,...,S}

ΩsOffAlg
s̄ ,

where ΩsOffAlg
b ,

{
ω ∈ Ω : mint∈T s

sOffAlg
ω (t) = s̄

}
.

In particular, subset ΩsOffAlg
s̄ represents the coalition of all input

instances that results in the minimum storage level b upon executing the
deterministic online algorithm sOffAlg.

Definition 3.5.1: Define the local competitive ratio CRs̄(sOffAlg) of
sOffAlg under the subset of input instances ΩsOffAlg

s̄ as

CRs̄(sOffAlg)
def
= max

ω∈Ω
sOffAlg
s̄

ProfOPT(ω)

ProfsOffAlg(ω)
. (3.16)

Given Definition 3.5.1, we can redefine CR(sOffAlg) as follows.

Definition 3.5.2: Define CR (sOffAlg) as the maximum of CRs̄(sOffAlg)

over all subsets ΩsOffAlg
s̄ , s̄ ∈ {0, 1, . . . , S}, i.e.,

CR(sOffAlg) = max
s̄∈{0,1,...,S}

CRs̄(sOffAlg). (3.17)

In [13], we justify that the based on the above definition the
competitive ratio takes maximum value only among the subsets with
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s̄ = Λi, i ∈ {1, 2, . . . , N − 1}, i.e.,

CR(sOffAlg) = max
s̄∈{Λ1,Λ2,...,ΛN−1}

CRs̄(sOffAlg).

The following lemma characterizes a closed-form for CRs̄(sOffAlg).

Lemma 3.5.1: For sOffAlg, if
CRΛi(sOffAlg) ≥ CRΛk(sOffAlg), k ∈ {i + 1, i + 2, . . . , N − 1} and
i ≤ N − 1, then we have:

CRΛi(sOffAlg) =
piS +

∑N−1
k=i+1 pkλk∑N

k=i+1 pkλk
. (3.18)

otherwise,

CRΛi(sOffAlg) ≥ piS +
∑N−1

k=i+1 pkλk∑N
k=i+1 pkλk

. (3.19)

We omit the proof of Lemma 3.5.1, since it is analogous to that in
Chapter 2. Using the result in Lemma 2.5.2, we get the global
competitive ratio of sOffAlg under universal set of instances as follows

CR(sOffAlg) = max
i∈{1,2,...,N−1}

piS +
∑N−1

k=i+1 pkλk∑N
k=i+1 pkλk

. (3.20)

Our goal is to achieve the minimum possible value for CR(sOffAlg).
Our design space toward this goal is to find: (i) the optimal value for
pi which directly characterizes function g(s), recall that by definition
pi = g(Λi), and (ii) λN as the length of the last step in function which
characterizes the threshold level sth, recall that we have sth = S − λN .

The following lemma states that the minimum global competitive
ratio is achieved when the value of local competitive ratios are all equal.

Lemma 3.5.2: Given a fixed λ1, λ2, . . . , λN , CR(sOffAlg) minimizes
only if the following expression holds:

pN−1S

pNλN
=
pN−2S + pN−1λN−1

pNλN + pN−1λN−1

= · · · = p1S +
∑N−1

k=2 pkλk∑N
k=2 pkλk

.

Using the result in Lemma 3.5.2 and by straightforward calculations,
we can express λi as

λi =
pi−1 − pi

pi

pnSλn
pn−1S − pnλn

, i ∈ {2, 3, . . . , N − 1}. (3.21)
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Given S =
∑n

i=1 λi, and combining with (3.21), we get

S = λ1+
pNSλN

pN−1S − pNλN

N−1∑
i=2

pi−1 − pi
pi

+ λN .

Lemma 3.5.3: When S → ∞, the competitive ratio of sOffAlg takes
the minimum value only if pN−1 → pN .

Recall that S is the discretized version of the original storage capacity,
and S → ∞ could be achieved if we choose sufficiently small unit of
electricity δ as in Equation (3.14). Given the results in Lemma 3.5.2 and
Lemma 3.5.3, we have

CR(sOffAlg) =
S

λN
=

λ1

λN
+

S

S − λN

N−1∑
i=2

pi−1 − pi
pi

+ 1

≥ S

S − λN
log θ̂ + 1. (3.22)

It can be verified that the above equation achieves the minimum value
when N → ∞, λ1 = 0, and λi = 1, i ∈ {2, . . . , N − 1}. Now, if s <
S − λN , we have

S − s =
N∑
k=s

λk = pNSλN
pN−1S−pNλN

∑N−1
k=s

pk−1−pk
pk

+ λN

≈ SλN
S−λN

∫ ps−1

pmin

1
p
dp+ λN

= SλN
S−λN

log ps−1

pmin
+ λN ,

where the second-to-the-last equality holds since the difference
between pi and pi−1 would be arbitrarily small when N → ∞ and
λi = 1, i ∈ {2, . . . , N − 1}. Note that whenever 1 < s < S − λN and
g(s) = ps−1, solving the above equation we get the following
closed-form for g(s)

g(s) =

{
pmin if s ≥ S − λN ,
pmine

(S−λN−s)(S−λN )

SlN otherwise.
(3.23)

Moreover, according to Equation (3.22), we have

λN =
S

CR(sOffAlg)
=

S
S

S−λN
log θ̂ + 1

,
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and the closed form for λN is

λN =
(2 + log θ̂)S −

√
log2 θ̂ + 4 log θ̂S

2
. (3.24)

Putting together the results in Eqs. (3.23), (3.24), and (3.15), the
result in Theorem 4.4.1 is proved.

3.6 Online Offering Strategy without Accurate Single-Slot Prediction

In Sec. 3.6.1, we first extend the previous result to the case that the
clearing price p(t) is unknown to SRGENCO when submitting the
offer, however, the renewable output r(t) is known accurately. Second,
in Sec. 3.6.2, we extend the result to the general case that the renewable
output is known to SRGENCO with forecasting error.

3.6.1 mOffAlg: sOffAlg with Multiple Offer Submissions; p(t) Is
Unknown, r(t) Is Known

Our general approach in this scenario is to use the potentials of
submitting multiple offers which is allowed in the current markets, e.g.,
in PJM market, the producers can submit at most 10 offers [4]. We
again note that all the offers of producers with the offering prices less
than the market clearing price are successful. Our approach in this case
is to calculate total feasible commitment volume, and then partition this
total amount into multiple offers, each of which conveying a portion of
the offering volume, in different prices.

Let us define set B with ε elements as the offer set of the SRGENCO,
where ζ is the maximum number of offers that is permitted by the market
operator (e.g., ζ = 10 in PJM market). Each element i in B consists of
tuple (oi, pi) where oi and pi are the offering volume and offering price
of offer i = {1, . . . , ζ}.

In Algorithm 3.2, we summarize the details of mOffAlg, as the
multiple version of sOffAlg, when the clearing price is unknown. First,
we present the formal definition of the total feasible commitment
volume, denoted as V (t) as follows:

V (t) = r(t) + min{s(t), ρd}. (3.25)

The total feasible commitment volume captures the maximum
quantity that the SRGENCO can commit to the market for the next
hour, which is the aggregation of the renewable output and the
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maximum amount that can be discharged from the storage, i.e.,
min{s(t), ρd}.

Our general idea is to equally partition V (t) into ε volumes, and
submit one offer corresponding to each of them. The maximum
charging rate ρc and the threshold value cth are two important
parameters that make the volume partitioning unequal in boundary
points.

In Lines 3-8 of Algorithm 3.2, we set the offering volume and offering
price for the first offer at the boundaries. The offer in Line 4 is for the
case that total storage level after charging exceeds the sth value. Hence,
the surplus is offered with the minimum price. On the other hand, the
offer in Line 6 offers the renewable output beyond the charging limit of
storage level at the minimum price. Finally, the first offer is from the
ones with minimum prices as constructed in Line 8.

Then in the second step as shown in Lines 10-16, in Line 12, the
remaining quantity as declared by V ′(t) is divided into ζ − 1 parts.
Finally, for each offer we find the corresponding offering price
according to Line 14 in which function g(·) is defined in
Equation (3.10) and in Line 15 we add the offer to the set of offers.
Algorithm 3.2 mOffAlg

[
r(t), s(t)

]
1 declare B ← ∅ as the set of offers
2 Constructing the first offer at boundaries
3 if min{r(t), ρc}+ s(t) > sth

4 o1(t)← r(t) + s(t)− sth

5 else
6 o1(t)← [r(t)− ρc]+
7 end if
8 B ← {(o1(t), pmin)}
9 Constructing the remaining offers
10 V (t)← r(t) + min{s(t), ρd}
11 V ′(t)← V (t)− o1(t)
12 ∆o← V ′(t)/(ζ − 1)
13 for i← 1 to ζ − 1
14 pi ← g(V ′(t)− i∆o)
15 B ← B ∪ {(∆o, pi)}
16 end for
17 submit B

Theorem 3.6.1 characterizes the competitive ratio of mOffAlg as a
function of CR (sOffAlg) and the number of submitted offers ζ .

Theorem 3.6.1: The competitive ratio of mOffAlg is bounded by

CR(mOffAlg) ≤
(

1 +
CR(sOffAlg)θ̂

ζ2

)
CR(sOffAlg).

Note that as ζ → ∞ we have CR(mOffAlg) → CR(sOffAlg). In
experiments, we evaluate the impact of the number of offers on the
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performance of mOffAlg.

3.6.2 gOffAlg: Generalized mOffAlg; u(t) Is Given with Forecasting
Error, p(t) Is Unknown

Finally, we release the accurate forecasting assumption of the renewable
output, and assume that the error of power generation in the forthcoming
slot is bounded in a particular region. Namely the input to this algorithm
is r̃(t) as the predicted value and κ(t) as the maximum error, such that

r(t) ∈ [(1− κ(t))r̃(t), (1 + κ(t))r̃(t)], 0 ≤ κ(t) ≤ κmax.

Our algorithm gOffAlg is a simple extension of mOffAlg, with
replacing r(t) with (1 − κ(t))r̃(t) as the minimum possible value for
the renewable output. We skip the other details since they are the same
as mOffAlg. Note that with this input, the algorithm behaves in the
most conservative way, such that the over-commitment never happens.
Extending the algorithm to the more aggressive cases that takes into
account the risk of over-commitment is part of our future work.

In following theorem we characterizes the competitive ratio of
gOffAlg.

Theorem 3.6.2: Assuming κmax < 0.5, the competitive ratio of gOffAlg
is bounded by CR(gOffAlg) ≤ 1

1−2κmax
CR(mOffAlg).

Proof of Theorem 3.6.2. At each round, the bidding amount of gOffAlg
is at least 1−2κmax times of that of mOffAlg. Therefore, the competitive
ratio of gOffAlg is bounded by 1

1−2κmax
CR(mOffAlg). 2

Clearly, as κmax → 0, we get CR(gOffAlg) → CR(mOffAlg). In
experiments, we investigate the impact of forecasting error on the result
of gOffAlg.

3.7 Experimental Results

In this section, we evaluate the performance of our online strategies
using the real-word traces for the renewable output and electricity
market prices. Our objective is two-fold: (i) to compare the
performance against the optimal offline, a comparison algorithm [112],
and a baseline in which there is no storage, and (ii) to investigate the
impact of the system model and algorithm parameters.
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3.7.1 Experimental Settings

Renewable Output and Electricity Market Prices

We use the wind generation data from PJM energy market [11] with
the capacity of 10MW. We note that this is a wind farm in moderate
size and the largest one has an operational capacity of 1020MW [15].
The hourly electricity price data are from PJM market for most of the
experiments. We also demonstrated our results for Nord Pool [9] and
NYISO [8] markets in Table 4.3. We note that the prices exhibit severe
seasonal patterns. In particular, the prices are highly volatile, e.g., in
summer the peak price can be as high as $396.9/MWh. For this reason
we evaluate the performance of our algorithms in different seasons as
well.

Storage Capacity

Unless otherwise specified, the storage capacity is set to 20MWh. The
maximum charge and discharge rates are 10MW. In reality, large scale
Compressed Air Energy Storage (CAES) with similar parameters has
been developed to cope with renewable uncertainty [114].

Parameters for the Algorithms

Unless otherwise specified, for mOffAlg and gOffAlg, the default value
for the number of offers is 10. This is the common practice in PJM
market [4]. Moreover, the maximum forecasting error emax in gOffAlg
is set to 10%. Finally, we note that each data point in figures is the
average results of 100 different runs of the algorithms with T = 360
hours.
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Tab. 3.2: Summary of considered algorithms
Algorithm Description

Our algorithms

sOffAlg Simplified online offering strategy; p(t) and
r(t) are known

mOffAlg sOffAlg with multiple submissions; p(t) is
unknown, r(t) is known

gOffAlg Generalized mOffAlg; p(t) is unknown, r(t)
is known with error
Comparison Algorithms

OPT Optimal offline solution with storage
NoStorage Optimal offline solution without storage

FixedOnline Simple online algorithm with fixed threshold
price [112]

Comparison among Algorithms

We compare the performance of our algorithm gOffAlg with three other
alternatives: (1) OPT, the optimal offline solution that is implemented
as the benchmark to obtain the empirical competitive ratio; (2)
NoStorage, the optimal offline cost when there is no storage. This is
used to evaluate the economic advantage of integrating the storage; (3)
FixedOnline, another simple online algorithm with a fixed threshold
price. Specifically, we follow the approach in [112] and set the
threshold of this simple online algorithm fixed at

√
pminpmax, regardless

of the storage level. In this algorithm, SRGENCO commits all the
electricity whenever the price is not smaller than this threshold. The
acronyms for all the algorithms are summarized in Table 4.2.

3.7.2 Experimental Results

Comparison of Results across Different Seasons

In this experiment we report the profit obtained by different algorithms
in different seasons as well as the whole year. The result is depicted in
Figure 3.4. The main observations are: (1) gOffAlg achieves 80% of the
offline optimum, which shows that it is close to optimal. (2) gOffAlg
outperforms NoStorage by 15%, which signifies the substantial
economic benefit of incorporating the storage. (3) gOffAlg outperforms
FixedOnline by 42%, which depicts the superiority of our online
algorithms as compared to other “storage-level-oblivious” online
alternatives.
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Tab. 3.3: Summary of Theoretical and Empirical Competitive Ratios on Different Electricity
Markets

Market θ̂ = pmax/pmin Theoretical CR Empirical CR

PJM 13.44 4.37 1.18
NYISO 5.32 3.38 1.14

Nord Pool 3.63 2.95 1.09

10 20 30 40 501

1.5

2

2.5

3

3.5

Storage Capacity (MWh)

Em
pi

ric
al

 C
om

pe
tiv

e 
R

at
io

gOffAlg
FixedOnline

Fig. 3.6: The competitive ratio as a
function of storage capacity

10 20 30 40 501

2

3

4

5

6

7x 104

Storage Capacity (MWh)

Pr
of

it 
($

)

gOffAlg
FixedOnline
Offline

Fig. 3.7: The performance of different
algorithms as a function of
capacity

Impact of the Price Volatility

The electricity price in the deregulated electricity market exhibits large
fluctuation. Theoretically, large price volatility will degrade the
performance of the online algorithm, as the competitive ratio is an
increasing function of θ̂ = pmax/pmin. In this experiment, we present
the result under different values of θ̂. As shown in Figure 3.5, gOffAlg
is robust to price fluctuation with less than 5% increment, even though
the theoretical competitive ratio increases by 44%. Meanwhile, we note
that the empirical competitive ratio of FixedOnline decreases slightly
as the θ̂ increases. However, it is on average 90% larger than that of
gOffAlg, which further signifies the superiority of gOffAlg. In addition,
we report the result of gOffAlg for the prices in different markets in
Table 4.3. The result signifies that the larger the price volatility, the
large theoretical and empirical competitive ratios.

Impact of the Storage Capacity

Storage capacity planning is an important issue that SRGENCO’s
owner needs to consider, since the storage is still expensive with the
current technology. In this experiment, we vary the storage capacity
from 5 to 50MWh to investigate its impact on the profit of SRGENCO.
Figure 3.6 and Figure 3.7 show the empirical competitive ratios and the
obtained profits, respectively. As the storage capacity increases, an



3. Online Trading I: Online Offering of Renewable Supplies 69

increase in profit of both online algorithms is observed. However, the
increase in gOffAlg is smaller (3%) than that of FixedOnline (90%).
This is mainly because FixedOnline is completely oblivious to the
storage level, and with the increase in capacity, there would be more
room to mitigate this unawareness. Meanwhile, the empirical
competitive ratio of gOffAlg increases with large storage capacity
(from 1.03 to 1.18). This result depicts that when the capacity is in the
order of the renewable capacity (say, ×0.5 to ×2), gOffAlg is
close-to-optimal. However, when the storage capacity is much higher
than the renewable capacity (say, ×5), perhaps more sophisticated
algorithms are required.

Impact of Uncertainty of Clearing Price and Renewable Output

In the last set of experiments we investigate the impact of the number of
offers in mOffAlg (in Figure 3.8) and the forecasting error in gOffAlg
(in Figure 3.9). In mOffAlg, we relax the assumption of sOffAlg and
extend it to the case that the clearing price p(t) is unknown. We
proposed to submit multiple offers to alleviate its negative impact. To
investigate how many offers are sufficient for mOffAlg to achieve the
same performance level as sOffAlg, in Figure 3.8, we vary the number
of offers from 1 to 15. The notable observation is that submitting 1 or 2
offers is not sufficient. However, with 3 or more offers the performance
is quite similar to sOffAlg in which the price is known in advance. In
the last experiment, we increase the maximum error of renewable
output emax and calculate the profit of gOffAlg. The result shows that
gOffAlg is robust to forecasting error that belows 20%, and the obtained
profit decreases rapidly as error increases beyond 20%. Concluding
above, these experiments demonstrate that the negative impact of the
uncertainty in the clearing price can be effectively mitigated by
multiple offer submissions. However, accurate short-term renewable
forecasting is vital for SRGENCO to obtain a desired profit, since the
errors higher than 20% can severely degrade the performance.

2 End of chapter.
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4. ONLINE TRADING II: ONLINE PROCURING OF INDIVIDUAL
CONSUMERS

4.1 Problem Background

Electricity bill constitutes a significant portion of operational costs for
large scale data centers. Empowering data centers with on-site storages
can reduce the electricity bill by shaping the energy procurement from
deregulated electricity markets with real-time price fluctuations. In this
chapter, we focus on designing energy procurement and storage
management strategies to minimize the electricity bill of
storage-assisted data centers. Designing such strategies is challenging
since the net energy demand of the data center and electricity market
prices are not known in advance, and the underlying problem is coupled
over time due to evolution of the storage level. Using competitive ratio
as the performance measure, we propose an online algorithm that
determines the energy procurement and storage management strategies
using a threshold based policy. Our algorithm achieves the optimal
competitive ratio as a function of the price fluctuation ratio. We validate
the algorithm using data traces from electricity markets and data-center
energy demands. The results show that our algorithm achieves close to
the offline optimal performance and outperforms existing alternatives.

4.2 Summary of Main Results and Adopted Techniques

Generally speaking, the online procuring problem comes with two sets
of uncertain input parameters, which allow the adversary to have more
options in constructing the worst-case input. Therefore direct
application of existing algorithms can only guarantee sub-optimal
competitive ratios. The most relevant work, perhaps, is [48] where a
similar problem with a slightly different system model was studied.
Even though the solution in [48] is a competitive online algorithm, it is
oblivious of the state of storage in decision making, leading to a
sub-optimal competitive ratio.

By introducing the system model in Sec. 4.3, this thesis tackles the
energy procurement and storage management problem by making the
following constructions:
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B In Subsection 4.4.4, we propose an online algorithm, the
ONCOM, that determines the quantity of purchased energy from the
real-time electricity market at each time slot based on the current
energy price. To handle the uncertainty of energy demand, the ONCOM
builds a set of virtual storages each of which corresponds to the demand
at each slot. Then, we associate to each virtual storage a
threshold-based admission strategy that determines the purchased
quantity as a function of storage level. At each slot, the ONCOM
procures electricity from the market only if the price is lower than the
candidate price obtained from the threshold function. The ONCOM
ensures fulfilling the energy demand and in some slots that the market
price is cheap, it even buys electricity from the market to store it in the
storage for future consumptions.

B In Subsection 4.4.5, we analyze the competitiveness of the
ONCOM. We construct our analysis on top of the optimal competitive
analysis for k-min search problem [112], as a simplified version of our
problem by neglecting the uncertain demand. We show that by
leveraging the notion of virtual storages, the ONCOM achieves the
optimal competitive ratio of 1/(W (− θ̂−1

θ̂ exp(1)
) + 1), where θ̂ is the price

fluctuation ratio, and W (·) is Lambert-W function (defined as the
inverse of f(x) = x exp(x), and grows in logarithmic order).

B In Sec. 4.5, we extend the basic solution to the case when the
market price is not known even for the current slot. This makes the
problem the one of designing online bidding strategy in real-time
markets. We advocate the idea of submitting multiple bids, each with
different bidding price and quantity. We also extend our solution to the
more sophisticated battery models by incorporating maximum charging
and discharging rates.

B In Sec. 4.6, the ONCOM is verified using real data traces from
several electricity markets and data center energy demand. The results
show that the cost of the ONCOM is ×1.23 of the offline optimum, on
average in different markets, which is much better than the theoretical
“worst-case” competitive ratio. Our algorithm also outperforms the three
other existing solutions [48, 78, 112] significantly.

4.3 Problem Description

4.3.1 Market Model

We consider that a data center participates in a deregulated real-time
electricity market. We assume that the time horizon is divided into T
real-time settlement intervals, indexed by t, each with fixed lengths, e.g.,
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5 minutes in CAISO, NYISO, and SPP; 15 minutes in ERCOT; and 1
hour in ISO-NE, PJM, and MISO [16]. The independent system operator
(ISO) posts the electricity price p(t) ≥ 0 for the next slot shortly before
the actual operation of the slot. The values of p(t) are unknown for the
future slots. Section 4.5.1, considers the setting in which the price p(t)
is unknown even for the current slot. This turns our formulation into an
online bidding strategy design problem. Let pmax and pmin denote the
maximum and minimum electricity prices, whose values are known.1

Our analysis characterizes the competitive ratio as a function of θ̂.

4.3.2 Data Center Net Energy Demand

Let d(t) ≥ 0 be the net energy demand of data center at slot t. By net
demand, we mean the total energy demand subtracted by the (potential)
local renewable supply. We assume that d(t) is known for the current
slot. However, the net demand is unpredictable for the future slots due
to uncertainty in the workload of the datacenter and uncertainty of the
renewable supply. Hence, we assume that the values of d(t) are unknown
for future slots beyond t. Furthermore, our model does not rely on any
stochastic modeling of net demand and market price.

4.3.3 Energy Procurement and Storage Management Scenario

The scenario is depicted in Figure 4.1. We assume that the data center is
equipped with an on-site storage to reduce the electricity bill by shaping
the power consumption. Given demand d(t) and price p(t), the goal is
to determine quantity e(t) = es(t) + ed(t) as the purchased energy from
the electricity market to either satisfy the net demand of data center,
denoted as ed(t), or charge the storage, denoted as es(t), in cases that
the electricity price is cheap. In addition, demand d(t) can be covered
by both electricity market and on-site storage, i.e., d(t) = ed(t) + sd(t),
where sd(t) is the energy discharged from storage to satisfy the demand.

4.3.4 Storage Model

Let S be the maximum storage capacity. In practice, storage systems
have maximum charging and discharging rates. To avoid notation and
solution complexities, we proceed to formulate the problem without
these parameters. Our solution design, however, can be extended to the
general storage models without fundamentally changing the algorithms
as discussed in Section 4.5.2.

1 This assumption is reasonable since by the historical data of electricity prices, the maximum and
minimum market prices could be found.
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Fig. 4.1: The energy procurement and storage management scenario

Tab. 4.1: Summary of key notations related to the online procuring problem
Notation Description

t Index of each time slot
T The number of time slots, T ≥ 0
T Set T = {1, 2, . . . , T}

pmax, pmin The maximum and minimum electricity price

p(t)
Electricity price at t, pmin ≤ p(t) ≤ pmax, known for t,
unknown for τ ∈ T : τ > t

θ̂ The price fluctuation ratio, θ̂ = pmax/pmin

S The capacity of storage system
s(t) The storage level (state of charge) at the end of t

d(t)
The net energy demand (in kWh), known for t, unknown for
τ ∈ T : τ > t

e(t) The total procured energy at t from market
es(t) The amount of procured energy charged into the storage at t
ed(t) The amount of procured energy used to satisfy the demand at t

Let s(t) be the storage level at the end of slot t. Given the net demand
d(t), the evolution of storage level is given as

s(t) =
[
s(t− 1) + es(t)− sd(t)

]
S
, (4.1)

where [.]S defines the projection onto set S = [0, S]. Note that at each
slot either es(t) or sd(t) is zero, which dictates either charging or
discharging of the storage. More specifically, if e(t) > d(t), then
es(t) > 0 and sd(t) = 0. On the other hand, if e(t) < d(t), then
es(t) = 0 and sd(t) > 0. Hence, given e(t), it is straightforward to
calculate ed(t), es(t), and sd(t), thereby we formulate the problem by
considering e(t) as the only optimization variable.
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Problem Formulation

We formulate the energy procurement and storage management problem
(called ECOM, as Energy COst Minimization problem) as follows

ECOM min
∑
t∈T

p(t)e(t)

s.t. : ∀t ∈ T :

e(t) ≥ d(t)− s(t− 1), (4.2)

s(t) =
[
s(t− 1) + e(t)− d(t)

]
C
, (4.3)

vars. : e(t) ≥ 0, t ∈ T .

In the ECOM, the goal is to find e(t) (as the optimization variable) at
the beginning of each slot, such that the long-term electricity cost is
minimized (as the objective) and at the same time data center net
demand is covered and capacity constraint of storage is respected (as
the constraints). Note that the storage level expression in Equation (4.3)
is equivalent to Equation (4.1).

The ECOM is a linear problem that could be easily solved in offline
setting when the entire inputs p(t) and d(t) are given ahead of time.
The real-world practical setting, however, is online, due to online
arrival of price p(t) and net demand d(t). In this thesis, we follow
online competitive algorithm design [39] which does not rely on exact
or stochastic modeling of future inputs. For the performance measure,
we characterize the competitive ratio of our solution, defined as the
maximum possible ratio between the cost of the online algorithm and
the offline optimum, over the whole set of instances.

We focus on designing energy procurement and storage management
strategies to minimize the electricity bill of storage-assisted data centers.
Designing such strategies is challenging since the net energy demand of
the data center and electricity market prices are not known in advance,
and the underlying problem is coupled over time due to evolution of the
storage level.

4.4 Online Solution

4.4.1 The ECOM as an Extension of k-min Search Problem

The ECOM could be considered as an extension of k-min search
problem. In this problem, a player wants to buy k ≥ 1 units of an asset
with the goal of minimizing the cost. At any slot t = {1, . . . , T}, the
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player is presented a price p(t), and must immediately decide whether
or not to buy one unit of the asset given p(t).

In the ECOM, similar to k-min search, price p(t) arrives in slot-by-
slot fashion, and the storage capacity is similar to available budget of
procuring k units of an asset (energy in our case). Different from k-
min search, however, in the ECOM, the net energy demand is another
uncertain input to the problem, which could be considered roughly as
the dynamics in available budget for the asset in k-min search problem.
The new uncertain input enables the adversary to have more flexibility
to construct worst-case input sequence.

Our solution is built upon the optimal online algorithm proposed
in [112] for k-min search problem in which a threshold function as a
function of remaining budget is devised. In the algorithm proposed
in [112], if the posted price p(t) is lower than the value obtained form
the threshold function, it buys one unit of the asset. In the context of the
ECOM, the high level idea is to determine the procurement quantity
based on the available energy in the storage using a threshold function.
More specifically, if the storage level is almost full, it would be of
interest to satisfy the demand locally by discharging the storage, hence,
buying electricity is beneficial only if the market price is very cheap.
On the other hand, if the storage level is almost empty, the only option
is to buy the electricity form the market even with high price, since the
local storage is unable to satisfy the entire net demand.

In the next section, we extend the optimal online algorithm for k-
min search to the ECOM. Since the net energy demand of data center is
similar to dynamics in available budget of buying asset in k-min search,
our algorithm constructs several virtual storages each corresponding to
the demand at each slot. Then, for each virtual storage we construct a
specific threshold function which is a scaled version of the one for k-min
search according to the capacity of virtual storages.

4.4.2 Constructing Virtual Storages

Without loss of generality, we assume that the initial state of the battery
is 0. Our algorithm, named ONCOM, constructs multiple virtual
storages as follows. Initially, it builds a virtual storage of capacity S,
corresponding to the original battery. Afterwards, at each time slot t,
the ONCOM creates a logical virtual storage of capacity d(t).
Consequently, at slot t, there are t + 1 virtual storages; the first one
corresponds to the original storage, and the remaining t virtual storages
each corresponds to slots in {1, . . . , t}. Given the above virtual storage
construction, we can record both the initial storage (of capacity S) and
the storage spaces created due to the demand from the data center. In
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this way, the history of purchased energy and demand is logically
“stored” among those virtual storages.

Putting together the storage level of all virtual storages, we define
s(t) as the algorithm state at time slot t, whose elements are the states
of the virtual storages, i.e.,

s(t) = [s0(t), s1(t), . . . , st(t)] , (4.4)

where s0(t) is the storage level of the original storage, and si(t), i ∈
{1, · · · , t} is virtually the amount of energy stored at slot t for the virtual
storage created at slot i.

According to this construction, the aggregate amount of electricity in
virtual storages, i.e.,

∑t
i=0 si(t), corresponds to total procured

electricity, and the aggregate capacity of virtual storages except the first
one, i.e.,

∑t
i=1 d(i), corresponds to the aggregate demand over [1, t].

Thus, we have

s(t) =
t∑
i=0

si(t)−
t∑
i=1

Si, (4.5)

as the storage level defined in Equation (4.3), where Si = d(i) is the
capacity of i-th virtual storage. Note that when s(t) = 0, the algorithm
will be set back to the initial state.

4.4.3 The Threshold-based Procurement Policy of the ONCOM

The energy procurement policy of the ONCOM for each single storage
is determined using a threshold function gi(si(t)) with respect to si(t)
as the state of charge of storage i. The threshold function generates a
value such that if the market price p(t) is less than the value, it
purchases energy. Intuitively, the threshold function is decreasing, i.e.,
as the storage level increases, the threshold price decreases since there
is sufficient energy in storage to fulfill the demand.

By optimizing threshold function gi(si)
2, we can achieve an

intriguing competitive ratio. The optimal design of the threshold
function and the performance results are summarized in the following
theorem. The proof is given in Sec. 4.4.5.

Theorem 4.4.1: Given the threshold function

gi(si) = pmax

[
1−

(
1− 1

α?

)
exp

(
si
α?Si

)]
, si ∈ [0, Si], (4.6)

for virtual storage i ∈ [0, t], the admission policy of the ONCOM
2 Note that we drop index t, to avoid notation complexity.
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achieves the competitive ratio of α? given by

α? =

(
W

(
− θ̂ − 1

θ̂ exp(1)

)
+ 1

)−1

, (4.7)

as the unique solution of

1− 1/θ̂

1− 1/α?
= exp

(
1

α?

)
. (4.8)

Moreover, the competitive ratio α? is optimal, meeting the optimal
competitive ratio for the k-min search problem.

Remark 4.4.1: In Equation (4.7), W denotes Lembert-W function
defined as inverse of f(x) = x exp(x). It is well known that
W (x) ≈ lnx [6]. The theorem shows that the competitive ratio is
approximately proportional to a natural logarithm of θ as the price
fluctuation ratio. In practice, the scale of θ varies substantially in
different markets, e.g., the real-time prices in MISO [16] and
NYISO [8] in June 2017 varied in [$11.09, $73.08] and [$9.08, $65.26].
Given θ̂ = 40, the competitive ratio is
α? = 1 +W ((40− 1)/e) = 2.98. Our experimental results (see
Table 4.3) demonstrate much lower empirical ratios using the real
prices in different markets.

4.4.4 Determining the Procurement Quantity

Given the threshold function in Equation (4.6), the final step is to
determine quantity e(t) as the optimization variable. Let ei(t) be the
procured amount for storage i at slot t as follows

ei(t) =

{
0, if p(t) ≥ gi(si(t− 1))
g−1
i (p(t))− si(t− 1), if p(t) < gi(si(t− 1))

(4.9)

In Equation (4.9), when p(t) ≥ gi(si(t − 1)), it means that the market
price is above the candidate threshold price and it is not beneficial to
purchase electricity form the market, hence, we set ei(t) = 0.
Otherwise, it purchases the electricity up to the level that the remaining
state matches the market price. Intuitively, Figure 4.2 illustrates the
calculation of ei(t) when p(t) < gi(si(t − 1)). Note that gi(si) is
decreasing with respect to si, and we have gi(0) = pmax/α

? and
gi(Si) = pmin.

Having the values of ei(t) for all virtual storages, the last step is to
determine the aggregate energy procurement e(t). To satisfy
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Fig. 4.2: The illustration of gi(si) and determining ei(t) when p(t)<gi(si).

constraint (4.2), i.e., e(t) ≥ d(t)− s(t− 1), we calculate e(t) as follows

e(t) = max

{
t∑
i=0

ei(t), d(t)− s(t− 1)

}
.

When
∑t

i=0 ei(t) < d(t) − s(t − 1), the algorithm will be set back
to the initial state, i.e., s(t) = 0. Otherwise, the ONCOM logically
allocates ei(t) units of energy to storage i.

Based on the above construction, we conclude our proposed
algorithm ONCOM and summarize it as Algorithm 4.1.
Algorithm 4.1 Energy Procurement Policy of ONCOM: ∀t ∈ T
1 At each time slot t:
2 st(t)← 0
3 for i = 0 to t
4 if p(t) ≥ gi(si(t))
5 ei(t)← 0
6 else
7 ei(t)← g−1

i (p(t))− si(t− 1)
8 si(t)← si(t− 1) + ei(t)
9 end if
10 end for
11 e(t)← max

{∑t
i=0 ei(t), [d(t)− s(t− 1)]+

}
12 if s(t) = 0
13 Initialize the algorithm state: s(t)← [0]
14 else
15 s(t)← [s0(t), s1(t), . . . , st(t)]
16 end if



4. Online Trading II: Online Procuring of Individual Consumers 80

4.4.5 Competitive Analysis

Recall that without energy demand of data center, i.e., d(t) = 0, t ∈ T ,
the ECOM degenerates to the classic k-min search problem [112],
whose competitive ratio is lower bounded by α? as characterized in
Equation (4.8). A direct consequence is that α? is a lower bound for the
ECOM as a generalized k-min search problem. In this section, we
demonstrate that under the non-trivial extension of uncertain demand,
the ONCOM achieves the competitive ratio of α?, meeting the lower
bound for the competitive ratio of the ECOM such that α? is the optimal
competitive ratio of the ECOM as well.

The key idea in competitive analysis is to intelligently partition the
entire time horizon into several cycles. Then, we prove that to achieve
the competitive ratio for the ECOM over entire time horizon, it suffices
to find the competitive ratio over one cycle. Based on this observation, it
is enough to search the worst instance among ones only containing one
cycle. The detailed analysis is as follows.

Cycle Partitioning

Define a cycle Tc = [t′ + 1, t] ⊆ T , as the time interval between two
time slots when the storage begins to store energy until it gets fully
discharged. Each cycle is further divided into two periods: Period I in
which the storage level is strictly positive, i.e., s(t) > 0, t ∈ Tc, and
Period II, in which the storage keeps unoccupied, i.e., s(t) = 0, t ∈ Tc.
An example of a cycle and two periods is shown in Figure 4.3.



A cycle

 

Period Period Ⅰ Ⅱ

( )s t

Fig. 4.3: Duration of a cycle.

Let sONCOM(t) and sOPT(t) be the storage level at slot t by executing
ONCOM and optimal offline solution over the worst case instance,
respectively.

Consider the following situation in which sONCOM(t− 1) = 0 and
sOPT(t − 1) > 0. Then, the adversary constructs a worst case instance
as follows. It sets the market price to the maximum value, i.e.,
p(t) = pmax, and the energy demand to the remaining energy in the
storage, i.e., d(t) = sOPT(t − 1) > 0. In the above worst case instance,
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the remaining energy under OPT is fully utilized, while the ONCOM
must procure the entire demand from the market at the maximum price.
An important observation in above worst case instance construction is
that the storage in both ONCOM and OPT gets fully discharged by the
end of a cycle. The following result shows that the competitive analysis
for the ONCOM can be reduced to one cycle.

Lemma 4.4.1: Let ω be the worst instance and C be a cycle realized by
the ONCOM under ω. The cost ratio during C is exactly equal to the
competitive ratio of the ONCOM.

Proof of Lemma 4.4.1. Since ω is the worst-case instance, we write
the competitive ratio of the ONCOM as costONCOM

ω /costOPT
ω as the cost

ratio between the cost of the ONCOM and the OPT given ω as the input
to the ECOM. In addition, let costONCOM

Tc /costOPT
Tc be the cost ratio of

the ONCOM and the OPT given cycle Tc = [t′ + 1, t] as the input. We
prove the result by contradiction using the following two cases:

Case (1): costONCOM
ω /costOPT

ω > costONCOM
Tc /costOPT

Tc .
In this case in cycle C = [t′ + 1, t] the maximum cost ratio is smaller

than the competitive ratio of the ONCOM. At time slots t′ and t, the
storage under both ONCOM or OPT is empty. Then, we can “remove”
the input segment over C and present the instance

ω′ = [(p(τ), d(τ))]τ=1:t′ ⊕ [(p(τ), d(τ))]τ=t+1:T ,

where ⊕ in above equation denotes the concatenation of inputs over the
slots. By the above replacement, the cost ratio of ω′ is

costONCOM
ω′

costOPT
ω′

=
costONCOM

ω − costONCOM
Tc

costOPT
ω − costOPT

Tc
>

costONCOM
ω

costOPT
ω

, (4.10)

where the last inequality follows from x1−x3

x2−x4
> x1

x2
, if x1

x2
> x3

x4
,

x1, x2, x3, x4 > 0, x1 > x3, x2 > x4. Consequently, Equation (4.10)
shows that there is another instance ω′ whose cost ratio is larger than
ω, contradicting that ω is the worst case input.

Case (2): costONCOM
ω /costOPT

ω < costONCOM
Tc /costOPT

Tc .
In this case, we construct another input instance by “inserting” one

additional cycle in the middle of ω as follows

ω′ = [(p(τ), d(τ))]τ=1:t

⊕ [(p(τ), d(τ))]τ=t′+1:t

⊕ [(p(τ), d(τ))]τ=t+1:T .
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By constructing ω′, its cost ratio is

costONCOM
ω′

costOPT
ω′

=
costONCOM

ω + costONCOM
Tc

costOPT
ω + costOPT

Tc
>

costONCOM
ω

costOPT
ω

, (4.11)

where the last inequality follows from x1+x3

x2+x4
> x1

x2
, if x1

x2
< x3

x4
,

x1, x2, x3, x4 > 0, x1 > x3, x2 > x4. Similarly, Equation (4.11) shows
that the cost ratio of ω′ is bigger than that of ω, contradicting that ω is
the worst case input.

Putting together cases (1) and (2), we infer that given the worst
instance, the cost ratio in cycle Tc is equal to the competitive ratio of the
ONCOM. 2

Given the result in Lemma 4.4.1, in the rest of analysis, we consider
the instances which only contains one cycle.

Worst-case Analysis

For notational convenience, we denote the minimum threshold obtained
by the threshold functions as ḡ(s(t)), i.e.,
ḡ(s(t)) = mini=0,1...,t gi(si(t)).

Lemma 4.4.2: Suppose the worst instance for the ONCOM is ω. For an
arbitrary positive value δ > 0, we have ḡ(s(t))− p(t) ≤ δ, ∀t ∈ T .

Proof of Lemma 4.4.2. We prove this by contradiction. Assume there
exists a time slot in the worst case instance that p(t) < ḡ(s(t))− δ. Let

n =

⌊
ḡ(s(t))− p(t)

δ

⌋
.

Now, we insert n slots before time slot t and construct a new instance ω′

as follows:

ω′ = [(p(τ), d(τ))]τ=1:t−1

⊕ [(ḡ(s(t))− kδ, 0)]k=1,...,n

⊕ [(p(t), d(t))]

⊕ [(p(τ), d(τ))]τ=t+1:T .

Given ω′, the charging amount of the ONCOM during new inserted
slots would be the same as the charging amount in ω for slot t, however,
the cost is higher than the previous cost. On the other hand, the cost of
the OPT given ω′ remains intact. Hence, we constructed a new instance
whose cost ratio is larger than ω, contradicting the assumption that ω is
the worst case instance. 2
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The following result is the key in proving the competitive ratio of the
ONCOM.

Lemma 4.4.3: Given gi(s), i ∈ {0, 1, 2, . . . , t} in Equation (4.6), we
have

(Si − s)pmax +
∫ s
z=0

gi(x)dx

gi(s)Si
≤ α?, ∀ s ∈ [0, Si]. (4.12)

Proof of Lemma 4.4.3. By substituting Equation (4.6), we first calculate
the second term in numerator of Equation (4.12) as follows∫ s

x=0

gi(x)dx = pmax

[
x−

(
1− 1

α?

)
exp

(
x

α?Si

)
α?Si

] ∣∣∣∣∣
s

x=0

= pmax

[
s−

(
1− 1

α?

)
exp

(
s

α?Si

)
α?Si

]
+ pmax

(
1− 1

α?

)
α?Si.

Thus, we calculate the numerator

(Si − s)pmax +

∫ s

x=0

gi(x)dx

= α?Si

(
pmax

[
1−

(
1− 1

α?

)
exp

(
s

α?Si

)])
= α?Sigi(s). (4.13)

Substituting (4.13) into (4.12) completes the proof. 2

We proceed to prove Theorem 4.4.1 by showing that the competitive
ratio of the ONCOM is upper bounded by α?.

Given the result in Lemma 4.4.1, we only consider the instances
which only contain one single cycle.

Assume t is the last time slot in Period I. At time slot t, there are t+1
virtual storages. An example of the algorithm state is shown in Figure
4.4.

By the construction of function g in Equation (4.6), we have
gi(si(t)) = mint∈[i,t] p(t), and since it is a decreasing function during
[i, t] the minimum thresholds of the ONCOM over all virtual storages is
gi(si(t)). Moreover, the result in Lemma 4.4.2 states that with the worst
instance, during [i, t] there is no time slot with price lower than
gi(si(t))− δ, i.e., p(τ) ≥ gi(si(t))− δ,∀τ ∈ [i, t].
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Fig. 4.4: The algorithm state at time slot t = 7.

Using the aforementioned results, we now calculate the costs of both
ONCOM and OPT in Periods I and II.

(1) Cost in Period I: By definition, the aggregate demand is equal to
the aggregate capacity of virtual storages except the first virtual storage
during Period I. Thus, the minimum cost for the OPT is

t∑
i=1

[gi(si(t))− δ]Si.

On the other hand, due to the threshold-based strategy, the maximum
cost over Period I under the ONCOM is

t∑
i=0

∫ si(t)

x=0

gi(x)dx.

(2) Cost in Period II: In Period II, the state of the storage is 0. Under
the worst instance, the adversary sets the market price to the maximum
value, and the energy demand is set to the remaining storage level in the
OPT. To ensure the worst case competitive, we assume that the storage
level in the OPT full, i.e., s(t) = S.

In this case, the OPT procures C units of energy in Period I, in
addition to fulfilling the demand during Period I, whose cost is at least

[g0(s0(t))− δ]S.

The additional cost for the ONCOM to procure C units of energy is to
buy directly from the market with the maximum price, i.e., Spmax. Using
Equation (4.5), we can rewrite this cost as follows:

t∑
i=0

(Si − si(t)) pmax.
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Putting together the costs for Periods I and II, the cost ratio between
the ONCOM and the OPT over one cycle is∑t

i=0

[
(Si − s̄i(t)) pmax +

∫ si(t)
x=0

gi(x)dx
]

∑t
i=0 [gi(si(t))− δ]Si

,

where δ is an arbitrarily small positive value. Based on Lemma 4.4.3,
we have

lim
δ→0

(Si − s̄i(t)) pmax +
∫ si(t)
x=0

gi(x)dx

[gi(s̄i(t))− δ]Si
≤ α?,

It implies the the competitive ratio of the ONCOM is α?, matching the
lower bound competitive ratio for the ECOM as the optimal competitive
ratio k-min search problem.

4.5 Extensions

4.5.1 Extension to Online Bidding Strategy Design

In this section, we extend our design to the case that the price p(t) is
unknown for the current slot t. Hereinafter, we drop index t from all
notations for simplicity. This extension turns the problem into finding
an online bidding strategy, in which the data center along with other
customers, submits its bid, including the bidding price p̂ and the
bidding quantity x̂, for the forthcoming slot shortly before the actual
operation time. The ISO matches the offers collected from the suppliers
with the received bids from the demand-side and using a double auction
mechanism, it determines the market clearing price p for the next hour.
Then, the bids with bidding price higher than the market clearing price
become successful in purchasing submitted bidding quantity from the
market.

In this new setting, calculating the value of Equation (4.9) becomes
infeasible since p is unknown. Our general approach to tackle the
extended scenario is to submit multiple bids. Note that submitting
multiple bids from a single entity is allowed in the existing electricity
markets, e.g., in PJM market, the each customer can submit at most 10
bids [11].

Let us denote the procurement quantity given clearing price p as
e(p). Note that e(p) can be calculated in Line 10 of the ONCOM in
Alg. 4.1 and for brevity we dropped index t and just state it as a
decreasing function of p as the clearing price.

By defining Bk = 〈ek, pk〉 as the k-th bid and assuming the maximum
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Tab. 4.2: Summary of comparison algorithms
Algorithm Description

ONCOM
The proposed online algorithm for the
ONCOM

ONFIX [48]
Simple online algorithm with fixed threshold
price

ONADPT [112]
Adaptive threshold algorithm with single
storage level

LYPOPT [78] Lyapunov-based algorithm

number of bids is ζ , at each time slot t, we submit ζ bids as follows

Bk = 〈e(pmin + (k − 1)δ)− e(pmin + kδ), pmin + kδ〉,
∀k ∈ {1, 2, . . . , ζ − 1},

Bζ = 〈e(p̃), pmax〉,

where p̃ = ḡ(s) is the minimum threshold obtained from all threshold
functions as defined in Equation (4.6) and δ = (p̃ − pmin)/(ζ − 1). Bζ
is defined to ensure that the net demand is satisfied by purchasing the
electricity from the market. In experiments, we show that by submitting
only 6 bids when the price is unknown, the performance becomes almost
the same as the case when p is posted in advance.

4.5.2 Extension to Practical Storage Models

In practice in the storage systems, there are maximum charging and
discharging rates. In this section, we extend the solution design in
Subsection 4.4.4 to the general storage model with charging and
discharging rates. Let ρc and ρd be the maximum charging and
discharging rates of the on-site storage system. Given these limits, the
minimum and maximum procurement quantities become
d−min{s, ρd} and ρc + d, respectively. Given these values, we modify
e(p) as follows

e(p) =

 ρc + d, if e(p) ≥ ρc + d
e(p), if d−min{s, ρd} ≤ e(p) ≤ ρc + d
d−min{s, ρd}, if e(p) ≤ d−min{s, ρd}

In experiments, we evaluate the performance of this extension.
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(a) PJM Market
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(b) NYISO Market

Spring Summer Autumn Winter Year

0.25

0.5

0.75

1

1.25

1.5

E
m

pi
ric

al
 C

os
t R

at
io

OnCoM OnAdpt OnFix LypOpt

(c) ECORT Market
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(d) Nord Pool Market

Fig. 4.5: Comparison results of different algorithms in different seasons in different electricity
markets

Tab. 4.3: Summary of Theoretical and Empirical Competitive Ratios of Different Algorithms in
Different Markets

Market θ̂ Theoretical competitive ratio Empirical cost ratio
ONCOM ONADPT ONFIX LYPOPT

PJM 21.93 3.63 1.29 1.32 1.45 1.47
NYISO 3.39 1.61 1.20 1.23 1.42 1.36
ERCOT 8.32 2.35 1.39 1.38 1.50 1.51

Nord Pool 1.95 1.29 1.07 1.09 1.21 1.16

Average 8.90 2.21 1.23 1.26 1.39 1.38

4.6 Experimental Results

In this section, we evaluate the performance of the proposed ONCOM
algorithm using real-world traces for data center energy demand and
electricity market prices. Our objective is three-fold: (i) to compare the
performance against the offline optimum and existing
alternatives [112, 48, 78] (as listed in Table 4.2); (ii) to investigate the
impact of the system model parameters on the performance of the
proposed algorithm; and (iii) investigate the performance of extensions
in Sec. 4.5.
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4.6.1 Experimental Settings

• Data Center Energy Demand The real-world workload data is
based on the access traces published by Wikipedia [14]. One line
of those traces corresponds to one web access, including the
time-stamp of the request and the requested URL, among others.
By counting the number of accesses every 1 hour, the energy
demand in kWh is approximately calculated based on the model
proposed in [78]. To create uncertainty, we inject the scaled output
of a wind farm in California [7] such that on average 50% of
demand is fulfilled by renewable supply. The remaining net
demand must be satisfied by either purchasing from the market or
discharging the storage.

• Electricity Market Prices We use electricity prices from
PJM [11], NYISO [8], ERCOT [62], and Nord Pool [9], whose
price fluctuation ratios are shown in Table 4.3. Since the prices
exhibit severe seasonal patterns, we report the results in a seasonal
basis. Toward this, we use the prices for October 2016 (autumn),
January 2017 (winter), April 2017 (spring), and July 2017
(summer). The summer prices from PJM market are used for the
rest of the experiments.

• The Performance Metric and Comparison Algorithms We
report the “empirical cost ratio” as the performance metric, which
is obtained by dividing the cost of each algorithm by the cost of
offline optimal solution, thereby the lower the value, the better the
performance. As listed in Table 4.2, we compare the result of the
proposed ONCOM algorithm with existing algorithms as follows:
(i) the ONFIX [48] as a simple strategy that follows a fixed
threshold of

√
pmax × pmin as the purchasing policy; (ii) the

ONADPT [112] as the simplified version of the ONCOM in which
there is an adaptive policy with a single threshold function for the
original storage similar to Equation (4.6); and finally (iii) the
LYPOPT [78] as a Lyapunov-based policy. Note that we ignore the
QoS model in [78] and only consider the storage management
similar to ours.

• Parameter Settings Unless otherwise mentioned, we set the
length of each slot to 1 hour and T = 60, i.e., 5 days. The capacity
is set to S = 5 × maxt∈T d(t). Finally, each data point in figures
corresponds to the average results of 100 runs each of which with
different random demands and market prices, picked from data
traces.
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4.6.2 Experimental Results

• Comparison Results across Different Seasons and Markets
The results are shown in Figure 4.5 and Table 4.3. The notable
observations are: (i) the cost of the ONCOM is 1.23 times of the
offline optimum, on average in different markets; (ii) the ONCOM
outperforms the alternative algorithms ONFIX [48] and
LYPOPT [78] significantly and its performance is slightly better
than ONADPT [112] as the other adaptive threshold based policy;
and finally (iii) the empirical cost ratio of the ONCOM is much
better than the obtained theoretical competitive ratio.

• Impact of System Model Parameters In Figures 4.6.2, 4.6.2,
and 4.6.2, we investigate the impacts of price fluctuation ratio θ̂,
the length of time horizon T , and the capacity of storage on the
cost ratio of different algorithms. The result in Figure 4.6.2
demonstrates that while the theoretical competitive ratio increases
as θ̂ increases (see Equation (4.7)), the empirical cost ratio of the
ONCOM is almost the same with slight increase. More
importantly, comparing the result of the ONCOM and ONADPT

for large values of θ̂ shows that the performance of our algorithm
when the price is highly fluctuating is considerably better than the
ONADPT. The result in Figure 4.6.2 demonstrates that there is a
decrease in the cost ratio for all the algorithms as the length of
time horizon increases. Finally, the results in Figure 4.6.2 depict
an increase in the cost ratio of all the algorithms as the capacity of
storage increases. This is reasonable, since with larger capacity
the offline optimum has more flexibility to utilize storage to shape
the energy procurement from the market.

• The Performance of the Extended Algorithms In Figure 4.6.2,
we report the performance of the proposed extension of the
ONCOM (ONCOM-MultipleBids) by submitting multiple bids
when the market price is unknown for the forthcoming slot.
Toward this, we change the maximum number of submitted bids,
and report the empirical cost ratios. The results show that as the
number of submitted bids increases the empirical cost ratio
decreases. By submitting more than 6 bids, the cost ratio is very
close to the ONCOM where the price is known (1.22 vs. 1.19).
In Figure 4.6.2, we set ρ = ρc = ρd and change their
restrictiveness by varying fraction ρ/S. The result shows that
initially when the charging rate is very restricted, i.e., ρ/S < 0.2,
the empirical cost ratio of the extended ONCOM (ONCOM-Rates)
is smaller than that of original ONCOM. This is reasonable since
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Fig. 4.6: The impacts of system model parameters on empirical cost ratio of different algorithms
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Fig. 4.7: The results of extensions of the ONCOM
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with more restriction in charging rate, the overall benefits of the
storage is limited, hence both offline optimum and the
ONCOM-Rates cannot reduce the cost substantially, thereby
achieving almost the same cost. On the other hand, with
ρ/S > 0.2, the cost ratio of ONCOM-Rates becomes very close to
that of the ONCOM, which means that the extended algorithm
works properly.

2 End of chapter.



5. ONLINE LEARNING

In this chapter, we will investigate a class of influential online learning
problems, whose basic version stems from the classical Expert problem
and Online Convex Optimization problem. Motivated by many recent
applications, in this thesis, we investigate a more general framework,
called the Online Non-Convex Leaning problem or the Lipschitz Expert
problem in some literature. This framework can be applied to more
general scenarios where the training set is in a metric space, and the
cost function is not necessarily convex. By firstly introducing an
optimal algorithm in the literature, this thesis provides a more complete
picture for the online learning community. As a gentle start, we begin
with introducing the Expert problem.

5.1 The Expert Problem

Consider a common scenario where an online player has to make a
choice among available actions (for example, buy or not in a stock
market). In the online learning context, we can assume there are a
number of (e.g, N ) “experts” who can offer advice to the player on
making decisions. At each round, the online player will choose one
expert and follow his advice. After committing to one choice, the
online player will be aware of the experts who have offered the correct
advice this round. The goal of the online player is to following the
“correct” expert, i.e., making mistakes as few as possible.

For the expert prediction problem, [108] introduces a classic
algorithm called the Weighted Majority algorithm which maintains
exponential weights to evaluate the performance of the expert. In a
more general scenario, we can consider the case where the expert’s
advice is evaluated by a quantified real value ct(i) instead of counting
the number of mistakes. In this case, a closely related algorithm, called
Hedge, was introduced in [72]. For each expert, there is an exponential
weight, denoted by ξt(i), i = 1, 2, . . . , N , and the Hedge algorithm
choose the i-th expert with probability qt(i) = ξt(i)/

∑N
j=1 ξt(j). The

details of Hedge are summarized by the following pseudo-code.
Algorithm 5.1 Hedge
1 Initialize: ∀i ∈ N , ξ1(i) = 1



5. Online Learning 94

2 for t = 1 to T
3 Pick the i-th expert with probability qt(i) = ξt(i)/

∑N
j=1 ξt(j)

4 Incur loss ct(It)
5 Update weights ξt+1(i) = ξt(i) exp(−ηct(i))
6 end for

By properly designing the weighting strategy, the Hedge algorithm
can guarantee the average cost to approach that of the best expert
asymptotically. The performance of Hedge algorithm can be
summarized in the following theorem (for the details of the proof, one
can refer to the survey paper by Hazan [80]).

Theorem 5.1.1: Let c2
t denote the N -dimensional vector of square

losses, let η > 0, and assume all losses to be non-negative. The Hedge
algorithm satisfies for any expert i ∈ N :

T∑
t=1

q>t ct ≤
T∑
t=1

ct(i) + η
T∑
t=1

q>t c
2
t +

logN

η
.

Assume ct ≤ cmax. By setting η =
√

logN
Tc2max

, we have that

T∑
t=1

q>t ct −
T∑
t=1

ct(i) ≤ 2cmax

√
T logN.

In other words, the regret of the Hedge algorithm is O(
√
T logN).

5.2 Online Convex Optimization

In addition to the Expert learning problem, there has been also extensive
research focusing on the Online Convex Optimization problem since the
seminal work by Zinkevich [149]. The OCO problem is modeled as
a repeated game composed of T iterations. At iteration t, the player
chooses a point xt from a bounded convex decision set K ⊂ Rn; after
the choice is committed, a bounded convex cost function ft : K 7→ R+

is revealed to the player. The goal of the player is to minimize the regret,
which is defined as the difference between the online cumulative cost
and the cumulative cost using an optimal offline choice in hindsight.
This model can be applied to many real-world problems, such as online
routing [30, 136], spam email filtering [79, 130], online metric learning
[86], ad selection and content ranking in search engines [138, 54, 115],
etc.

A promising result related to the OCO model is that the regret of the
state-of-the-art efficient algorithms [80] is O(

√
T ), touching the well-

known lower bound of the regret for the OCO problem [80]. Researchers
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have proposed a large number of online algorithms whose regret attains
this lower bound, including the Online Gradient Decent method [149],
the Stochastic Gradient Decent method [128, 126, 133, 82], the Online
Newton Step, and many regularization-related methods [95, 77] (see the
recent survey paper [80], and the references therein).

5.3 A More General Framework: Online Non-Convex
Learning/Lipschitz Expert

Despite the success of the Expert problem and the Online Convex
Optimization problem, there are still many limitations especially when
the learning set is continuous but there is no convexity assumptions for
the decision set or cost functions. For example, in the portfolio
selection problem [55, 88], the decision maker (e.g., the trader) chooses
a distribution of her wealth allocation over n assets xt, at each round.
By the end of each round, the adversary chooses the market returns of
the assets with positive values. In some specific settings [137, 104, 27],
the online portfolio selection problem is a non-convex one due to the
non-convex diversification constraints and non-convex transaction
costs, and thus the traditional OCO framework fails in modeling such
case. In addition, there is extensive machine learning research focusing
on non-convex loss functions in large margin classifiers [119, 144, 64].
In [119, 64], non-convex online Support Vector Machine (SVM)
models has been studied which adopts a non-convex loss function,
called Ramp Loss, to suppress the influence of outliers. In [144], a
special non-convex penalty, called the smoothly clipped absolute
deviation penalty, is imposed on the hinge loss function in the SVM.
Such a new SVM is applied to identify important genes for cancer
classification [144].

This thesis tackles the ONCL problem, with non-convex L-Lipschitz
cost functions and non-convex continuous decision set. The online
non-convex learning problem demonstrates a structured repeated game,
whereat each iteration t, the player chooses a decision xt ∈ K, where
K ⊆ Rn is a bounded decision set whose diameter is D, i.e.,
supx,y∈K ||x − y||2 = D. After the player commits to a decision point
at iteration t, the adversary chooses a cost function ft(x) ∈ F , where
F : K 7→ R+ is a bounded set of cost functions which are assumed to
be non-negative and L-Lipschitz (as defined in Equation (5.1)).

Definition 5.3.1: A function f : K → R (where K ⊂ Rn) is L-Lipschitz
if

|f(x)− f(y)| ≤ L‖x− y‖2, ∀x,y ∈ K. (5.1)
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Tab. 5.1: Summary of notations related to the ONCL problem
Notation Description

t Index of iteration
T The number of iterations, T ≥ 1
T Set T = {1, 2, . . . , T}
n The dimension of the decision space
xt Chosen decision point at t
K The decision set available for the online player
D Diameter of the decision set K

ft(x)
ft(x) : K 7→ R+. Cost function at iteration t, known for t− 1,
unknown for τ ≥ t

L Lipschitz constant for the cost functions

F The set of bounded cost functions which are available for
adversary

Ht
Ht = (f1, f2, . . . , ft−1). The historical cost functions available
for the online algorithm at iteration t

At each iteration, the player needs to make online decisions without
knowing the current and future cost functions. Fed with the historical
cost functions Ht = (f1, f2, . . . , ft−1), the decision of an online
algorithm A at iteration t is denoted as xt = A(Ht).

Our goal is to design an online algorithm for the ONCL problem and
try to minimize the regret. Ideally, it is desired to have a sublinear regret
with respect to T , i.e., regretT (A) = o(T ). The sublinear regret implies
that time-average performance of the online algorithm is as good as the
best fixed strategy as time goes to infinity.

5.4 Related Results

The ONCL problem is not a new problem and there are plenty prior
works on it. Among them, [64] and [73] propose respective heuristic
online training algorithms, but neither of them are rigorously shown to
satisfy any regret bound. In [81], Hazan and Kale tackle the ONCL
problem with submodular cost functions, and propose an online
algorithm that attains the regret of O(

√
T ). In [145], an online bandit

learning problem with non-convex losses is investigated. The cost
function is again a special non-convex function, defined as the
composition of a non-increasing scalar function with a linear function
of small variation. An online algorithm is developed with
Õ(poly(d)T 2/3) regret, where poly(d) stands for a polynomial with
respect to the dimension of the decision set d. The most related works
to ours are [103] and [116], where by applying the exponential
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Tab. 5.2: Summary of key notations related to the ORW algorithm
Notation Description

R
The notation used for the ORW algorithm in the equations
(Algorithm 5.2)

D Cover cube of the decision set K
i`

Index for a sub-cube/subset in `-th layer,
i` = (i`,1, i`,2, · · · , i`,n)

D`(i`) Layer-` sub-cube indexed by i`
K`(i`) Layer-l subset indexed by i`
I` Index set for those nonempty layer ` subsets

vs(i`) Index of layer s subset that contains K` (i`)

Hs (K`(i`)) Index set of nonempty layer s subsets within the subset K`(i`),
i` ∈ I`

m The number of layers where the subsets are sampled
qm(im) The sampled point for the subset Km(im)

cm,t(im)
The cost on the sample point of the subset Km(im) at iteration
t, i.e., cm,t(im)

def
= ft(qm(im))

Lm
The maximum cost difference of two points in the same layer m
subset

I l,t The index of the subset chosen in layer l at iteration t

c̄`,t(i`)
The normalized expected cost conditioning on that subset
K`(i`) is chosen in layer ` at iteration t. For short, we also call
it the expected cost of choosing K`(i`) in layer l at iteration t

C̄`,t(i`)

The cumulative sum for c̄`,τ (i`) up to iteration t, i.e.,
C̄`,t(i`) =

∑t
τ=1 c̄`,τ (i`). For short, we also call it the

cumulative expected cost of choosing K`(i`) in layer l up to
iteration t

weighting method [29] the regret of O(
√
T log T ) is attained.

In addition, the ONCL problem has been broadly investigated under
a similar problem, called the Lipschitz Expert problem [96, 98], which
generalizes the traditional Expert problem to metric spaces. For such a
problem, a regret of O(

√
T log T ) can be achieved [98]. However, to

the best of our knowledge, for the general ONCL problem, no online
algorithm can achieve the regret of O(

√
T ) as the well-known lower

bound for the OCO.

5.5 Online Recursive Weighting Algorithm

The Online Recursive Weighting (ORW) algorithm is based on the idea
of dividing the entire decision set into several sampling subsets so that
each subset contains highly correlated elements. An essential tuning
parameter for the algorithm is the granularity of the sampling subsets,
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which determines the number of final sample points (details in
Sections. 5.5.1 and 5.5.2).

To define the granularity of the sampling subsets, we construct a
layered grid structure. The topmost layer consists of a single grid and
hence a single subset including the entire decision set K. The sampling
subsets are the subsets in the bottommost layer. Hence, assuming there
are m layers, there are 2nm sampling subsets in total. In Section 5.5.1,
we explain the details of constructing the layered grid structure.

In the next step (Section 5.5.2), a single element is randomly
selected from each sampling subset called sample point, and by
grouping all these points, we construct the set of sample points. At each
iteration, the algorithm selects a decision point randomly from the set
of sample points according to a probability distribution function.

Deriving the probability distribution function to select the decision
point is the core technical contribution of the ORW algorithm and is
proposed in Section 5.5.3.

5.5.1 A Layered Grid Structure

Recall that the diameter of bounded decision set K is D, hence, it is
possible find a bounded cube of length D, denoted by D, that can cover
K entirely, i.e., K ⊂ D. In layer ` ∈ N+, we partition D into smaller
identical sub-cubes with edge length of size D/2`. The decision set is
n-dimensional, hence the total number of sub-cubes is equal to 2n`. For
simplicity, each sub-cube is indexed by a distinct n-dimensional vector
i` = (i`,1, i`,2, . . . , i`,n), where 1 ≤ i`,j ≤ 2`, j = 1, 2, . . . , n, and the
sub-cube indexed by i` is denoted byD`(i`). One can refer to Figure 5.1
for an illustrative example with n = 2 and ` = 1.

The notation K`(i`) is used to represent the intersection of the
decision set K and corresponding sub-cube D`(i`), i.e.,

K`(i`) def
= D`(i`) ∩ K.

By convention, we regard the decision set K as the only layer 0 subset,
denoted by K0(1) = K. By the above partitioning structure, in total 2n`

subsets at layer ` are constructed, whose union is the decision setK. The
subset can be empty and we denote the index set for nonempty layer l
subsets by I`, i.e.,

I` def
= {i` : K`(i`) 6= ∅}.

Any subset indexed by i` ∈ I`, i.e., K`(i`), consists of a group of
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1i
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1
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1((1,2)) 1((2,2))

1((2,2))

Fig. 5.1: Layer-1 set partitioning for a general decision set K.

1i

2i
D

2 ((4,4))

2

2

((3,3))

((3,3))

1 2

1

2

3 4

3

4 2 ((3,4))

2 ((4,3))

2 ((4,3))

2 ((3,4))

Fig. 5.2: The index set for the overlapped sub-cubes when n = 2 and ` = 2.
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Fig. 5.3: Sampling for the case when n = 2 and m = 2.
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neighboring lower-layer subsets. Specifically, for any s > `, we have

K`(i`) =
⋃

is : is,j ≥ 1 + (i`,j − 1)2s−`,
is,j ≤ i`,j2

s−`,
j = 1, 2, . . . , n.

Ks(is)

To ease the presentation, we define the following notation:
B We use Hs (K`(i`)) , s ≥ `, to denote the index set of nonempty

layer s subsets within K`(i`), i.e.,

Hs (K`(i`)) def
=
{
is ∈ Is : 1 + (i`,j − 1)2s−` ≤ is,j ≤ i`,j2

s−`} . (5.2)

Indeed, we have |Hs (K`(i`)) | ≤ 2(s−`)n.
B Assume i` ∈ I` and s ≤ `. We use vs(i`) to denote an index for

some layer s subset, and the elements of vs(i`) satisfy

vs,j =

⌈
i`,j
2`−s

⌉
, j = 1, 2, . . . , n.

Due to the above definition of vs(i`), i` ∈ I`, together with the set
partitioning method we adopt, it follows that K`(i`) ⊂ Ks(vs(i`)).

Example 1. Figure 5.1 illustrates a simple example of set
partitioning when n = 2 and l = 1. At layer 1, the cover cube D is
partitioned into four smaller sub-cubes, each of whom intersects the
decision set K, forming four nonempty subsets, respectively.

I1 = {(1, 1), (1, 2), (2, 1), (2, 2)} .

In Figure 5.2, the subsets in layer 1 are further divided and 14 fixed
nonempty layer 2 subsets are constructed. Particularly, the subset
K1((2, 2)) contains three nonempty layer 2 subsets, i.e., K2((3, 3)),
K2((3, 4)), and K2((4, 3)). Thus, we have

H2 (K1((2, 2))) = {(3, 3), (3, 4), (4, 3)} .

According to the definition of vs(il), we have

v1((3, 3)) = v1((3, 4)) = v1((4, 3)) = (2, 2),

and K2((3, 3)) ⊂ K1((2, 2)),K2((3, 4)) ⊂ K1((2, 2)), and K2((4, 3)) ⊂
K1((2, 2)).
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5.5.2 Sampling

Assuming layer 0 contains the original decision set K, we fix the
number of layers to be m + 1, where layer m contains at most 2nm

nonempty subsets. In the sampling procedure, a sample point, qm(im),
is selected randomly as a representative, from each nonempty subset in
layer m, Km(im). Figure 5.3 depicts a simple example for n = 2 and
m = 2, where the sample points are colored in blue. Due to the
bijective correspondence between the sample points and the subsets in
layer m, we interchangeably use choosing a sample point from a subset
and choosing the corresponding layer m subset.

In Section 5.5.3, we define a recursive, probabilistic algorithm to
select subsets as we go down the layered structure. Correspondingly,
this defines a probabilistic algorithm for choosing a decision point from
the sample points as the final decision of the ORW algorithm.

Once the decision point is selected at each iteration, the cost of the
decision, ft(qm(im)), along with the function ft is revealed.

For convenience, we denote the cost of the sample point from the
layer m subset, Km(im), im ∈ Im, at iteration t by cm,t(im), i.e.,

cm,t(im)
def
= ft(qm(im)).

Note that by this sample point construction step, the proposed
algorithm reduces the original problem in principle to an Expert
problem with |Im| experts. As compared to the classical setting of the
Expert problem in [46], the difference is that the cost function in our
problem is a non-convex L-Lipschitz continuous one. Finally, the
following lemma characterizes the cost difference between two sample
points.

Lemma 5.5.1: For µ,ν ∈ Im, we have

|cm,t(µ)− cm,t(ν)| ≤ 2Lm||µ− ν||1,

where Lm =
√
nDL/(2m) and ||µ− ν||1 =

∑n
j=1 |µj − νj|.

Proof of Lemma 5.5.1. The maximum distance between two points in
any subsets at the same layer m is

√
nD/(2m). Considering the

Lipschitz continuous condition, the maximum cost difference within
the same layer m subset is Lm =

√
nDL/(2m). We define that, any two

subsets of the same layer, µ and ν, are said to be neighboring subsets if
their coordinates satisfy µj − νj ≤ 1 for j = 1, 2, . . . , n. Then, the
maximum cost difference of two points in the union of any two
neighboring layer m subsets is 2

√
nDL/(2m). Thus, the maximum

distance for any two points in the union of two layer m subsets, µ and
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ν, is 2
√
nDL/(2m)||µ− ν||1. This yields the result in Lemma 5.5.1. 2

5.5.3 Recursive Choosing Policy

In this subsection, we propose a novel recursive decision structure to
determine the index point for the bottom-layer subset over the index set
Im. By implementing the ORW algorithm, the regret is reduced to
match the known lower bound, O(

√
T ) [80] for the OCO problem.

At iteration t, t = 1, 2, . . . , T , the final choice of the ORW
algorithm is obtained by recursively choosing a nonempty subset from
the topmost layer (` = 0) to the bottommost layer (` = m). In this way,
the action of the ORW algorithm at each iteration t, consists of a
sequence of indexes of subsets, i.e., (I0,t, I1,t, I2,t, . . . , Im,t). By
default, I0,t is set to be 1, referring to the only decision set K.
Additionally, I`,t should satisfy that I`,t ∈ H`(K`−1(I`−1,t)), i.e.,
K`(I`,t) ⊂ K`−1(I`−1,t) for ` = 1, 2, . . . ,m.

At each layer, a stochastic policy is adopted to select a lower-layer
subset. Suppose that, at iteration t and at layer l, 0 ≤ ` < m, the ORW
algorithm has chosen subset i` ∈ I`, i.e., I`,t = i`. Then, the algorithm
proceeds to choose a subset at the next layer (layer (` + 1)) in K`(i`)
randomly according to a conditional probability.

In the ORW algorithm, and for i`+1 ∈ H`+1(K`(i`)), the conditional
probability, Prt`,`+1(i`, i`+1)

def
= Pr [I`+1,t = i`+1|I`,t = i`], is based on

the cumulative expected cost of the previous iterations.
For iteration τ , 0 ≤ τ ≤ t−1, the expected normalized cost of subset

K`(i`), denoted by c̄`+1,τ (i`+1), is defined as follows

c̄`,τ (i`)
def
= E

cm,τ (Im,τ )− min
im∈Q

cm,τ (im)

2m−`+1Lm
|I`,τ = i`


=

∑
jm∈Hm(K`(i`))

cm,τ (jm)− min
im∈Q

cm,τ (im)

2m−`+1Lm
· Pr [Im,τ =jm|I`,τ = i`] ,

(5.3)

where Q = Hm(K`−1(v`−1(i`))). Note that c̄`+1,τ (i`+1) can be
computed at the end of iteration τ , once the cost function is revealed. In
Equation (5.3), the conditional selection probability for subset
jm ∈ Im, i.e., Pr [Im,τ = jm|I`,τ = i`] can be obtained by multiplying
the selection probabilities of the corresponding subsets at each layer,



5. Online Learning 103

i.e.,

Pr [Im,τ = jm|I`,τ = i`]

=
m−1∏
k=`

Pr [Ik+1,τ = vk+1(Km(jm))|Ik,τ = vk(Km(jm))] .
(5.4)

For a subset K`(i`), the cumulative expected cost, denoted by C̄`,t(i`),
is defined as the sum of the expected normalized cost from iteration 1 to
iteration t, i.e.,

C̄`,t(i`)
def
=

t∑
τ=1

c̄`,τ (i`). (5.5)

By convention, let the initial value of the cumulative expected cost be
zero, i.e., C̄`,0(i`) = 0 for all i` ∈ I` and for any layer ` = 1, 2, · · · ,m.

At iteration t, the selection probability, Pr [I`+1,t = i`+1|I`,t = i`], is
proportional to the exponent of the expected cumulative cost of choosing
subset i`+1 at layer (`+ 1) up to iteration t− 1, i.e.,

Pr [I`+1,t = i`+1|I`,t = i`] =
exp

(
−ηtC̄`+1,t−1(i`+1)

)∑
i′`+1∈H`+1(K`(i`))

exp
(
−ηtC̄`+1,t−1(i′`+1)

) ,
(5.6)

where ηt is a positive and decreasing parameter which implies that the
change of C̄(·) has decreasing influence on the choosing probability and
thus the decisions of the online algorithm get more steady as time goes
on. Note that the denominator in Equation (5.6) is a normalizer such that
right hand side of Equation (5.6) is a probability mass function.

Note that the ORW algorithm updates the cumulative expected cost at
the end of each iteration. Once the conditional probabilities are defined
and the cost function at iteration t is revealed, we then calculate the
expected normalized cost and further update the cumulative expected
cost for each subset, which is

C̄`,t(i`) = C̄`,t−1(i`) + c̄`,t(i`). (5.7)

Then, the newly computed cumulative expected cost will be used to
calculate the choosing probability at the next iteration as shown in
Equation (5.6). The summary of the proposed ORW algorithm is listed
as Algorithm 5.2.
Algorithm 5.2 The Online Recursive Weighting (ORW) Algorithm
Input: index set Im, T , {ηt =

√
n
t
}

Output: qm(Im,1), qm(Im,2), . . .
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. Output sample points of layer m subsets
1 for ` = 1, 2, . . . ,m

. Initialize the normalized expected cost for all subsets in all layers
2 for i` ∈ I`
3 Set C̄`,0(i`) = 0
4 end for
5 end for
6 Set C̄`,0(i`) = 0, ∀i` ∈ I`, ` = 1, 2, . . . ,m
7 for t = 1, 2, . . . , T
8 I0,t = 1

. Recursively select subsets in all layers
9 for ` = 0, 1, . . . ,m− 1
10 Randomly select an index I`+1,t ∈ H`+1(K`(I`,t)) according to the probability

distribution specified in Equation (5.6)
11 end for
12 end for
13 Choose the subset indexed by Im,t at iteration t
14 Choose the sampled point for subset Km (Im,t), i.e., qm(Im,t), as the final decision
15 for ` = 1, 2, · · · ,m

. Get the normalized expected cost for all subsets in all layers based on the revealed cost function ft(x)

at iteration t
16 for i` ∈ I`
17 for jm ∈ Hm(K`(i`))
18 Calculate Pr [Im,t = jm|I`,t = i`] according to Equation (5.4)
19 end for
20 Calculate Pr [Im,t=jm|I`,t = i`] according to Equation (5.4)
21 Update C̄`,t(i`) = C̄`,t−1(i`) + c̄`,t(i`)
22 end for
23 end for

Remark 5.5.1: (Technical differences with the traditional weighting
methods) For the expert learning problem, the intuitive idea to attain a
sublinear regret is to allocate more preference to the expert of smaller
cumulative cost in a stochastic manner [108], which can be realized by
the Exponential Weighting algorithm (or Hedge algorithm on a
continuum). The Hedge algorithm observes the costs on each point, and
updates the weight of a point based on its own cost only. Such a
point-by-point weighting method fails in utilizing the cost correlation
among neighboring decision nodes. Different from the Hedge
algorithm, the ORW algorithm is aware of the correlation of
neighboring points and groups highly correlated decision points as a
high-level decision. As expressed in Equation (5.3), a common
evaluation is conducted for each decision group, and a particular
amount of common preference is allocated to each point in the group.

5.6 Regret Analysis for the Online Recursive Weighting Algorithm

Since the ONCL problem is a more general model than the OCO, the
lower bounds for the OCO are still valid for the non-convex case. In the
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OCO framework, a well-known lower bound of the regret is O(
√
T ),

and the reader can refer to [80] for sketch of the proof. In this section,
we analyze the regret of the ORW algorithm (represented by R in
equations) and demonstrate it matches the above lower bound. The
main technical result is summarized in the following theorem.

Theorem 5.6.1: With ηt =
√
n/t, the ORW algorithm guarantees that

regretT (R) ≤ 2(ln 2 + 1)nDL
√
T + 2 ln 2 · nDL+

√
n

2m
DLT.

If m is further set to dlog2

√
nT e, it follows that

regretT (R) < (4n+ 1)DL
√
T + 2nDL.

Remark 5.6.1: (Dimensional dependency) Theorem 5.6.1 implies that
the ORW algorithm attains a regret of O(n

√
T ), with a mild polynomial

dependency on the dimension.

Remark 5.6.2: [103] shows that when the decision set is uniformly fat,
the Hedge algorithm can attain a regret of O(

√
T log T ). An interesting

result on the ORW algorithm is that the only assumption on decision set
is that it is bounded.

To carry out the analysis, we split the regret analysis of the ORW
algorithm into two parts:

B The first part is the regret due to the “imperfect choice” among
sample points, i.e.,

regretImC,T (R)
def
= sup

f1,...,fT∈F

{∑
t∈T

E [cm,t(Im,t)]− min
im∈Im

∑
t∈T

cm,t(im)

}
,

where the first term is the cumulative cost incurred by the online
algorithm (whose choice at iteration t is denoted by Im,t), and the
second term is the minimum cumulative cost among sampled points.

B The second part of the regret is introduced by “imperfect
discretization”, which is expressed as

regretImD,T (R)
def
= sup

f1,...,fT∈F

{
min

im∈Im

∑
t∈T

cm,t(im)−min
x∈K

∑
t∈T

ft(x)

}
,

where the second term is the minimum cumulative cost over the decision
set K. Since the supremum of sum is less than or equal to the sum of
supremum, we have the following lemma.

Lemma 5.6.1: regretT (R) ≤ regretImC,T (R) + regretImD,T (R).
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In the following proposition, we derive a bound for the first-part
regret of the ORW algorithm, which is related to the subproblem of
choosing a point over the index set Im.

Lemma 5.6.2: With ηt =
√
n/t, the ORW algorithm guarantees that

regretImC,T (R) ≤ 2(ln 2 + 1)nDL
√
T + 2 ln 2 · nDL.

Proof of Lemma 5.6.2. The ORW algorithm has a recursive
decision-making structure to determine the final decision.
Correspondingly, the regret due to “imperfect choice” can be further
splited into multiple pieces which are introduced at each layer.

Suppose a nonempty subset Kl(il) is chosen at layer
l ∈ {0, 1, 2, . . . ,m − 1}. In the next step, the ORW algorithm will
further choose a subset whose index lies in H`+1(K`(i`)). Among the
subsets of K`(i`), there exists a local optimal subset (for example,
i′′`+1), whose performance is known in hindsight and potentially a regret
loss due to imperfect choice at layer ` will be incurred by the online
algorithm. Equation (5.8) bounds such cost difference (or regret loss)
between

∑
t∈T E[cm,t(Im,t)|I`,t = i`] and∑

t∈T E
[
cm,t(Im,t)|I`+1,t = i′′`+1

]
at the `-th layer, where i′′`+1 is any

element inH`+1(K`(i`)).
In Equation (5.8), Q̃ = H`+1(K`(i`)) and Q̄ = Hm(K`(i`)).

Equality (E1) is obtained simply by the law of total probability.
Equality (E2) is due to the definition for c̄`+1,t(i`+1) in (5.3). Equality
(E3) is based on the conditional probability in (5.6). Inequality (E4) is
due to the following inequality,∑

i`+1∈H`+1(K`(i`)

exp
(
−ηtC̄`+1,t−1(i`+1)

)
· c̄`+1,t(i`+1)∑

i′`+1∈H`+1(K`(i`))
exp

(
−ηtC̄`+1,t−1(i′`+1)

) ≤
− 1
ηt

ln
∑

i`+1∈H`+1(K`(i`))

exp(−ηtC̄`+1,t−1(i`+1))·exp(−ηtc̄`+1,t(i`+1))∑
i′
`+1
∈H`+1(Kl(i`))

exp(−ηtC̄`+1,t−1(i′`+1))
+ ηt

2
.

(5.9)

The proof of Equation (5.9) is given in Appendix B.1. Equality (E5) is
due to the fact that C̄`+1,t(i`+1) = C̄`+1,t−1(i`+1)+ c̄`+1,t(i`+1). Equality
(E6) simplifies the expression for the log-sum-exp function by defining

Φt(α)
def
= − 1

α
ln

∑
i`+1∈H`+1(K`(i`))

exp
(
−αC̄`+1,t(i`+1)

)
,
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∑
t∈T

E[cm,t(Im,t)|I`,t = i`]

(E1)
=
∑
t∈T

∑
i`+1∈Q̃

P t`,`+1(i`, i`+1) · E [cm,t(Im,t)|I`+1,t = i`+1]

(E2)
=
∑
t∈T

∑
i`+1∈Q̃

P t`,`+1(i`, i`+1) ·
[
c̄`+1,t(i`+1) · 2m−`Lm + min

im∈Q̄
cm,t(im)

]

=
∑
t∈T

 ∑
i`+1∈Q̃

P t`,`+1(i`, i`+1) · c̄`+1,t(i`+1) · 2m−`Lm +
∑

i`+1∈Q̃

P t`,`+1(i`, i`+1) · min
im∈Q̄

cm,t(im)


=
∑
t∈T

 ∑
i`+1∈Q̃

P t`,`+1(i`, i`+1) · c̄`+1,t(i`+1) · 2m−`Lm + min
im∈Q̄

cm,t(im)


(E3)
=
∑
t∈T

 ∑
i`+1∈Q̃

exp
(
−ηtC̄`+1,t−1(i`+1)

)∑
i′
`+1
∈Q̃

exp
(
−ηtC̄`+1,t−1(i′`+1)

) · c̄`+1,t(i`+1)


︸ ︷︷ ︸

See (5.9), which is proved in Appendix B.1

· 2m−`Lm +
∑
t∈T

min
im∈Q̄

cm,t(im)

(E4)

≤
∑
t∈T


− 1

ηt
ln

∑
i`+1∈Q̃

exp
(
−ηtC̄`+1,t−1(i`+1)

)
· exp (−ηtc̄`+1,t(i`+1))∑

i′
`+1
∈Q̃

exp
(
−ηtC̄`+1,t−1(i′`+1)

) +
ηt
2


︸ ︷︷ ︸

See (5.9), which is proved in Appendix B.1

· 2m−`Lm + min
im∈Q̄

cm,t(im)



(E5)
=
∑
t∈T

− 1

ηt
ln

∑
i`+1∈Q̃

exp
(
−ηtC̄`+1,t(i`+1)

)∑
i′
`+1
∈Q̃

exp
(
−ηtC̄`+1,t−1(i′`+1)

) +
ηt
2

 · 2m−`Lm +
∑
t∈T

min
im∈Q̄

cm,t(im)

(E6)
=
∑
t∈T

[
Φt(ηt)− Φt−1(ηt) +

ηt
2

]
· 2m−`Lm +

∑
t∈T

min
im∈Q̄

cm,t(im)

(E7)
=

{
ΦT (ηT ) +

T−1∑
t=1

(Φt(ηt)− Φt(ηt+1))︸ ︷︷ ︸
See (5.10) which is proved in Appendix B.2

− Φ0(η1) +

T∑
t=1

ηt
2

}
· 2m−`Lm +

∑
t∈T

min
im∈Q̄

cm,t(im)

(E8)

≤

{
ΦT (ηT ) + ln 2 ·

√
nT − Φ0(η1) +

T∑
t=1

ηt
2

}
︸ ︷︷ ︸

See (5.10) which is proved in Appendix B.2

· 2m−`Lm +
∑
t∈T

min
im∈Q̄

cm,t(im)

(E9)

≤
{

ΦT (ηT ) + ln 2 ·
√
nT + ln 2 ·

√
n+
√
nT
}
· 2m−`Lm +

∑
t∈T

min
im∈Q̄

cm,t(im)︸︷︷︸
See (5.11) which is proved in Appendix B.3

(E10)

≤
{∑
t∈T

E
[
cm,t(Im,t)−minim∈Q̄ cm,t(im)

2m−`Lm
|I`+1,t = i′′`+1

]
︸ ︷︷ ︸

See (5.11) which is proved in Appendix B.3

+ (ln 2 + 1)
√
nT + ln 2 ·

√
n

}
· 2m−`Lm

+
∑
t∈T

min
im∈Q̄

cm,t(im)

(E11)
=

∑
t∈T

E
[
cm,t(Im,t)|I`+1,t = i′′`+1

]
+
(

(ln 2 + 1)
√
nT + ln 2 ·

√
n
)
· 2m−`Lm

(E12)
=

∑
t∈T

E
[
cm,t(Im,t)|I`+1,t = i′′`+1

]
+
(

(ln 2 + 1)nDL
√
T + ln 2 · nDL

)
︸ ︷︷ ︸

Denoted as φ

· 1

2`
, ∀i′′`+1 ∈ Q̃

(5.8)
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where α > 0. Equality (E7) rearranges the first set of terms and
Inequality (E8) uses the following bound result

T−1∑
t=1

[Φt(ηt)− Φt(ηt+1)] ≤
T−1∑
t=1

n

(
1

ηt+1

− 1

ηt

)
≤ ln 2 ·

√
nT , (5.10)

which is proved in Appendix B.2. Inequality (E9) entails the following
two results:

− Φ0(η1) =
1

η1

ln |H`+1(K`(i`))| =
1√
n

ln |H`+1(K`(i`))|

≤ 1√
n

ln 2n ≤ ln 2 · √n,

and
T∑
t=1

ηt
2
<

T∑
t=1

√
n(√

t+
√
t+ 1

) =
T∑
t=1

√
n ·
(√

t+ 1−
√
t
)

=
√
n ·
(√

T + 1− 1
)
≤
√
nT .

Inequality (E10) is due to the following inequality

ΦT (ηT )

≤
∑
t∈T

E

cm,t(Im,t)− min
im∈Q̄

cm,t(im)

2m−`Lm
|I`+1,t = i′′`+1

 , (5.11)

which is proved in Appendix B.3. Equality (E11) combines the first
term and the last term. Equality (E12) follows from the fact that Lm =√
nDL/2m.
For any cost functions (f1, f2, · · · , fT ), let i∗m be the index of which

the sample point has the smallest cumulative cost, i.e.,

i∗m
def
= arg minim∈Im

∑
t∈T

cm,t(im).

By repeatedly applying the result in Equation (5.8), we have
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∑
t∈T

E[cm,t(Im,t)]− min
im∈Im

∑
t∈T

cm,t(im)

=
∑
t∈T

E[cm,t(Im,t)|I0,t = 1]−
∑
t∈T

cm,t(i
∗
m)

≤
∑
t∈T

E [cm,t(Im,t)|I1,t = v1(i∗m)] + φ · 1

20
−
∑
t∈T

cm,t(i
∗
m)

≤
∑
t∈T

E [cm,t(Im,t)|I2,t = v2(i∗m)] + φ · 1

21
+ φ · 1

20

−
∑
t∈T

cm,t(i
∗
m)

≤ · · ·

≤
∑
t∈T

E [cm,t(Im,t)|Im,t = vm(i∗m)] + φ ·
(

1

2m−1
+ · · · 1

20

)
−
∑
t∈T

cm,t(i
∗
m)

=φ ·
(

1

2m−1
+ · · · 1

20

)
= 2φ ·

[
1− 1

2m

]
≤ 2φ.

(5.12)

Since (5.12) holds for any cost functions (f1, f2, · · · , fT ), we have

regretImC,T (R) ≤ 2φ = 2(ln 2 + 1)nDL
√
T + 2 ln 2 · nDL.

This completes the proof. 2

Remark 5.6.3: Even though a larger m leads to an exponential increase
of the size of the sample set, the above equation implies that
regretImC,T is always upper bounded by O(

√
T ) in time scale, no

matter what value m takes. On the other hand, the regret loss due to
imperfect discretization can be reduced with larger m.

Now, we state the the following lemma.

Lemma 5.6.3: The ORW algorithm guarantees that

regretImD,T (R) ≤
√
n

2m
DLT.

Proof of Lemma 5.6.3. For any cost functions (f1, f2, · · · , fT ), let

x∗
def
= arg minx∈K

∑
t∈T

ft(x).
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Suppose that the layer m subset containing point x∗ is indexed by i∗m.
The sample point for subset Km(i∗m) is qm(i∗m) ∈ K. Clearly,
qm(i∗m) = (q1, q2, · · · , qn) and x∗ = (x1, x2, · · · , xn) are in the same
sub-cube whose edge length is D/2m. Thus, we have

||qm(i∗m)− x∗||2
=
√

(q1 − x1)2 + (q2 − x2)2 + · · · (qn − xn)2

≤
√(

D

2m

)2

+

(
D

2m

)2

+ · · ·+
(
D

2m

)2

=
D
√
n

2m
.

Then, we have

min
im∈Im

∑
t∈T

cm,t(im)−min
x∈K

∑
t∈T

ft(x)

≤
∑
t∈T

cm,t(i
∗
m)−

∑
t∈T

ft(x
∗)

=
∑
t∈T

ft(qm(i∗m))− ft(x∗)

(E1)

≤ TL||qm(i∗m)− x∗||2 ≤
√
n

2m
DLT,

(5.13)

where inequality (E1) is due to the Lipschitz condition. Since (5.13)
holds for any cost functions (f1, f2, · · · , fT ), we conclude that
regretImD,T (R) ≤ √nDLT/2m. This completes the proof. 2

Putting together the results in lemmas 5.6.1, 5.6.2, and 5.6.3, the
results in Theorem 5.6.1 are proved.

5.7 Adaptive Sampling

The ORW algorithm described in Section 5.5, specifies a granularity
parameter, m, and samples the costs on the bottommost layer (layer m).
With m larger than log2

√
nT , the ORW algorithm guarantees the

regret to be O(
√
T ). In many cases, however, the duration interval is

long and unknown to the online player, and setting a large m to
guarantee O(

√
T ) regret might be costly to compute. In order to handle

cases with unknown T and reduce this complexity, in this section, we
devise an adaptive version of the ORW algorithm (called the AORW
algorithm), which increases the granularity parameter gradually. The
AORW algorithm denoted by Radpt in equations.
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c̄′`,t(i`)
def
=E

cmt,t(Imt,t)− min
imt∈Hmt (K`−1(v`−1(i`)))

cmt,t(imt
)

2mt−`+1Lmt

|I`,t = i`


=

∑
jmt
∈Hmt (K`(i`))

cmt,t(jmt
)− min

imt∈Hmt (K`−1(v`−1(i`)))
cmt,t(imt

)

2mt−`+1Lmt

· Pr
[
Imt,t = jmt

|I`,t = i`
]
.

(5.15)

5.7.1 Online Recursive Weighting Algorithm with Adaptive Sampling

The AORW algorithm adopts an increasing granularity parameter mt.
We denote the time interval that satisfies mt ≥ l as Tl or [tl, T ]. With
increasing mt, the index and the index set for the sampling subsets are
updated to the new notation, imt and Imt , respectively. qmt(imt) is used
to denote the sample point for the subset of index imt , and the cost on
the sampled point of the subset imt ∈ Imt at iteration t is denoted as

c′mt,t(imt)
def
= ft(qmt(imt)).

The AORW algorithm maintains the cumulative expected cost,
C̄ ′`,t(i`), for each subset in layers {1, 2, . . . ,mt}. The cumulative
expected cost is initialized to be zero, i.e., C̄ ′`,0(i`) = 0. During run
time, the cumulative expected cost is used to determine the choosing
probability of subsets in layers {1, 2, . . . ,mt}. The selection
probability for the subset K`+1(i`+1) conditioning on that K`(i`) has
been selected is

Pr [I`+1,t = i`+1|I`,t = i`]

=
exp

(
−ηtC̄ ′`+1,t−1(i`+1)

)∑
i′`+1∈H`+1(K`(i`))

exp
(
−ηtC̄ ′`+1,t−1(i′`+1)

) . (5.14)

Since there is a subset in each layer chosen in a recursive manner
from the top layer to the bottom layer, the action sequence of the
AORW algorithm at iteration t can be correspondingly denoted by a
vector, (I0,t, I1,t, I0,t, . . . , Imt,t), where I0,t is set to be 1 by default.

After the costs on the sampled points of the bottom-layer subsets are
revealed, the AORW algorithm calculates the normalized expected cost
for each subset in layers {1, 2, . . . ,mt}, which is defined in
Equation (5.15).

Then, the calculated normalized expected cost is used to update the
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cumulative expected cost, i.e.,

C̄ ′`,t(i`) = C̄ ′`,t−1(i`) + c̄′`,t(i`). (5.16)

For the case whenmt+1 = mt+1, the AORW algorithm will maintain
the cumulative expected cost for those subsets in the new layer, with
previous values over [1, tmt+1 − 1] set to be 0, i.e.,

c̄′mt+1,τ
(imt+1) = 0, for τ = 0, 1, 2, . . . , tmt+1 − 1.

The summary of the AORW algorithm is listed in Algorithm 5.3.

5.7.2 Regret Analysis

By adaptive sampling, the algorithm parameter does not depend on the
length of time interval. Meanwhile, an interesting result of the regret
analysis is that adaptive sampling does not degrade the regret bound.
We state the main result in the following theorem.

Theorem 5.7.1: With ηt =
√
n/t and mt being set to

⌈
log2

√
nt
⌉
, the

AORW algorithm achieves the following regret bound

regretT (Radpt) ≤
(
6n+ 2

√
n
)
DL
√
T .

Let i∗mt , t ∈ T indicate the bottom subset that contains the optimal
decision point x∗ at iteration t, i.e.,

i∗mt : x∗ ∈ Kmt(i∗mt), t ∈ T .

Similar to the regret analysis in Section 5.6, we define the regret due
to the imperfect choice among sample points as

regretImC,T (Radpt)
def
= sup

f1,...,fT∈F

{∑
t∈T

E
[
c′mt,t(Imt,t)

]
−
∑
t∈T

c′mt,t(i
∗
mt)

}
,

and that due to the imperfect sampling as

regretImD,T (Radpt)
def
= sup

f1,...,fT∈F

{∑
t∈T

c′mt,t(i
∗
mt)−min

x∈K

∑
t∈T

ft(x)

}
.

Similar to Lemma 5.5.1, we have

regretT (Radpt) ≤ regretImC,T (Radpt) + regretImD,T (Radpt).

In the following two lemmas, we bound the regret loss due to
imperfect choice and sampling, respectively.
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Lemma 5.7.1: With ηt =
√
n/t and the mt =

⌈
log2

√
t
⌉
, the AORW

algorithm guarantees that

regretImC,T (Radpt) ≤ 6DLn
√
T .

The proof of Lemma 5.7.1 is analogous to that of Lemma 5.6.2. The
details are given in Appendix B.4.

Lemma 5.7.2: With mt =
⌈
log2

√
t
⌉
, the AORW algorithm guarantees

that
regretImD,T (Radpt) ≤ 2DL

√
nT .

Proof of Lemma 5.7.2. For any cost functions (f1, f2, · · · , fT ), let

x∗
def
= arg minx∈K

∑
t∈T

ft(x).

Suppose that the bottom subset containing point x∗ is indexed by i∗mt ,
whose sample point is qmt(i

∗
mt) ∈ K. Clearly,

qmt(i
∗
mt) = (qmt,1, qmt,2, · · · , qmt,n) and x∗ = (x1, x2, · · · , xn) are in

the same sub-cube whose edge length is D/2mt . Thus, we have

||qmt(i∗mt)− x∗||2
=
√

(qmt,1 − x1)2 + (qmt,2 − x2)2 + · · · (qmt,n − xn)2

≤
√(

D

2mt

)2

+

(
D

2mt

)2

+ · · ·+
(
D

2mt

)2

=
D
√
n

2mt

≤ D

√
n

t
.

Then we have∑
t∈T

c′mt,t(i
∗
mt)−min

x∈K

∑
t∈T

ft(x)

=
∑
t∈T

c′mt,t(i
∗
mt)−

∑
t∈T

ft(x
∗)

=
∑
t∈T

ft(qm(i∗m))− ft(x∗)

(E1)

≤ L
∑
t∈T

||qmt(i∗mt)− x∗||2 ≤ 2DL
√
nT ,

(5.17)

where inequality (E1) is due to the Lipschitz condition. Since (5.17)
holds for any cost functions (f1, f2, · · · , fT ), we conclude that
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regretImD,T (R) ≤ 2DL
√
nT . This completes the proof. 2

The results in lemmas 5.7.1 and 5.7.2 immediately proves the result in
Theorem 5.7.1.
Algorithm 5.3 Recursive Weighting with Adaptive Sampling
Input: {ηt =

√
n/t},

{
mt =

⌈
log2

√
t
⌉}

Output: qm1
(Im1,1), qm2

(Im2,2), . . .
. Output sample points of layer-m subsets

1 for ` = 1, 2, · · · ,m1

. Initialize the normalized expected cost for all subsets in all layers
2 for i` ∈ I`
3 Set C̄`,0(i`) = 0
4 end for
5 end for
6 Set C̄`,0(i`) = 0, ∀i` ∈ I`, ` = 1, 2, . . . ,m1

7 for t = 1, 2, . . . , T
8 I0,t = 1

. Recursively select subsets in all layers
9 for ` = 0, 1, . . . ,mt − 1
10 Select an index I`+1,t ∈ H`+1(I`,t) according to the probability distribution

calculated in Equation (5.14)
11 end for
12 end for
13 Choose the subset indexed by Imt,t at iteration t
14 Choose the sampled point for subset Kmt (Imt,t), i.e., qmt

(Imt,t), as the final decision
15 for ` = 1, 2, . . . ,mt

. Get the normalized expected cost for all subsets in all layers based on the revealed cost function ft(x)

at iteration t
16 for i` ∈ I`
17 for jmt ∈ Hmt(K`(i`))
18 Calculate Pr

[
Im,t = jmt

|I`,t = i`
]

according to Equation (5.4)
19 end for
20 Calculate c̄`,t(i`) according to Equation (5.15)
21 Update C̄′`,t(i`) = C̄′`,t−1(i`) + c̄′`,t(i`)
22 end for
23 end for
24 if mt+1 > mt do
25 for imt+1 ∈ Imt+1

26 Set C̄′mt+1,t(imt+1) = 0
27 end for
28 end if

5.8 Extensions: Expert Learning with Partial Information Feedback

We emphasize that our online non-convex optimization problem is
based on full information feedback. That is, the whole cost function will
be revealed at the end of each iteration. It is an interesting and
important future direction to consider partial information feedback
where only the cost value of the player’s choice is revealed. The partial
information feedback extension is motivated by many real-world
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systems in which the observer is not co-located with the controller and
the feedback information is noisy, partial, or incomplete due to limited
communication bandwidth. Some examples are online routing in data
networks [30], power control in cellular networks [139], and the ad
placement problem on a web page [138].

The bandit information feedback setting has been investigated in a
huge number of works in the OCO framework such as
[70, 17, 129, 56, 18, 83, 84], which is called the Bandit Convex
Optimization (BCO) problem. Among those works, [70, 17, 129, 56]
reported to attain a sublinear regret for the BCO problem, respectively,
but none of them have attained the lower bound of the regret. For the
special case of strongly convex and smooth losses, [18] obtained a
regret of Õ(

√
T ) in the unconstrained case, and [83] obtained the same

rate even in the constrained case. Recently, a new algorithm was
reported by Hazan et al. to attain a regret of (lnT )2n

√
T [84]. This is

the first algorithm to attain a Õ(
√
T ) regret for the OCO model with

bandit feedback. Different from the above works, [19, 99, 124, 97, 98]
studied the model where the (expected) payoff function satisfies a
Lipschitz condition with respect to the metric. [19, 99, 124] investigate
this problem in a few specific metric spaces such as a one-dimensional
real interval, while in [97, 98], the action set is from a general metric
space. Their model is more general and the results in [98] show that
there is an algorithm whose regret on any instance satisfies
regretT = Õ(T

n+1
n+2 ), where n is the dimension of the action set.

Despite of the above results, the optimal online algorithm and tight
regret bound for the online non-convex optimization problem with
bandit feedback are still open, and attracts extensive recent interests in
the community.

2 End of chapter.



6. CONCLUSION AND DISCUSSIONS

The past four decades have seen the great success of the online
optimization methodology, which results in many classic online
problems in diverse computational contexts, such as scheduling,
caching, resource management, and online learning etc. With consistent
efforts from the community, optimal online solutions for many online
problems have been proposed. The problems having been solved
include the Ski Rental problem, the metrical task system, the one-way
trading problem, the Expert problem, the bandit problem and the Online
Convex Optimization problem etc. In addition to that, this thesis has
provided respective optimal online solutions for several fundamental
online optimization problems, i.e., the Online QoS Buffer Management
problem, the online trading problem, and the Online Non-Convex
Learning problem, making a more complete picture for the online
optimization area. Despite the above achievements, there are still many
complicated online problems whose optimal algorithms are still open,
such as the k-server problem, the preemptive QoS buffer management
problem, the bandit problem in metric spaces and the reinforcement
learning problem. In the following table, we summarize part of the
classical solved and unsolved online problems in the literature. (There
are also many diverse variants of the listed problems, for which I will
not introduce the details.)

There is no doubt that the future efforts should focus on those
unsolved online problems. In the following, we will introduce two
additional promising research directions in the future.

6.1 General Analysis Methods for Online Optimization

As future work, a possible research direction is to come up with more
advanced techniques to address complicated problems, which are
applicable for general online optimization problems. There were
several successful examples, such as the potential function method and
the primal-dual analysis, which have been proved to be extremely
useful methods for a broad class of online optimization problems, see
the introductory book [39] and the survey paper [44]. Despite the
success of the above frameworks, their applications in practice still
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Online Problem Application Area Metric Solved?
Ski Rental Computing Systems C. R. Yes

Metrical Task System Computing Systems C. R. Partially
k-Server Computing Systems C. R. No

Page List Access Computing Systems C. R. Yes
Job Shop Scheduling Computing Systems C. R. Partially

Online Knapsack Problem Computing Systems C. R. Yes
QoS Buffer Management Computing Systems C. R. No→Yes

Preemptive Buffer Management Computing Systems C. R. No
Secretary Problem Operations Research C. R. Yes

Online Search Operations Research C. R. Yes
Expert Problem Online Learning Regret Yes

Online Convex Optimization Online Learning Regret Yes
Lipschitz Expert Online Learning Regret No→Yes

Non-/stochastic Bandit Online Learning Regret Yes
Lipschitz Bandit Online Learning Regret No

Reinforcement Learning Online Learning Regret No

heavily depend on the properties of studied problem. Hence, it is
promising to study online analysis frameworks which are general and
easy to implement.

6.2 Other Practical Settings for Online Optimization

Currently, there are increasing research interests on many practical
problem settings for online optimization, which are motivated by many
practical applications. For example, Chen, in his several manuscripts
[49, 50, 51], studied a class of online convex optimization problems
with predictions. Prediction in online optimization is naturally
motivated, since it is very common for a decision-maker to access
partial or noisy information on the dynamics and states of studied
systems. Compared with traditional online optimization framework,
Chen’s work involves a stochastic prediction error model. By using
only a constant-sized prediction window, the proposed Averaging Fixed
Horizon Control (AFHC) policy can simultaneously achieve sublinear
regret and constant competitive ratio in expectation. Generally, the
online optimization with prediction is a new area, and more
investigations are needed to come up with general prediction
frameworks and related methods to make full use of noisy prediction.

Moreover, motivated by the recent interests on distributed learning,
there are also many works focusing on distributed online optimization
problems. For example, Hosseini [85] and Lee [105] generalized the
classic online convex optimization problem to a decentralized
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optimization framework within a network of agents. In their work,
consensus-based gradient-descent algorithms were proposed for
distributed online optimization. In their setting, each agent aims to
drive its individual average regret, which is the average over time of the
regret function evaluated at this agent’s estimation for the choice that
the whole network should make, to zero. An interesting message of
their work is that the O(

√
T ) regret can still be attained by leveraging

the communication among agents. [132] addresses decentralized online
optimization in non-stationary environments using mirror descent, and
in [22], distributed online optimization is studied for strongly convex
objective functions over time-varying networks. However, more general
online optimization problems in a distributed environment are
under-explored, needing more investigated from the community.

2 End of chapter.
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A. PART OF PROOFS OF CHAPTER 2

A.1 Proof of Lemma 2.5.3

By partially dualizing on the first set of nonequality constraints, we
obtain the following Lagrangian function:

L(y,v,µ) = y +
B−λ∑
i=0

µi(vλ+i+1B − y
λ+i∑
j=1

vj),

where µi, i = 0, 1, . . . , B − λ are the dual variables associated with the
non-equality constraints.

The first-order optimality necessity condition can be expressed as

1−
B−λ∑
i=0

µi

λ+i∑
j=1

vj = 0,

µiB − y
B−λ∑
k=i+1

µk = 0, i = 0, 1, . . . , B − λ− 1.

Note that vmin ≤ vj ≤ vmax for j = λ + 1, λ + 2, . . . , B − 1. Then,
by the means of above equations, we can show that
µi > 0, i = 0, 1, . . . , B − λ. Moreover, according to the
complementary slackness condition,

µi(vλ+i+1B − y
λ+i∑
j=1

vj) = 0, i = 0, 1, . . . , B − λ.

This implies that the following equations always hold:

vλ+i+1B − y
λ+i∑
j=1

vj = 0, i = 0, 1, . . . , B − λ.
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Mathematically, this can be rewritten as

vλ+i+1B
λ+i∑
j=1

vj

= y, i = 0, 1, . . . , B − λ.

This completes the proof.

A.2 Proof of Corollary 2.5.1

For the fractional case, a packet can be equally divided into arbitrarily
small units. Here n is a large integer. Specifically, we divide a packet
into n units. Let the threshold-based policy set a threshold value for each
unit of packet. Then by optimizing the threshold values and setting the
first step length λ = αB, we attain a competitive ratio γ satisfying(

γ +Bn

Bn

)Bn−αBn+1

−
(
γ +Bn

Bn

)Bn−αBn
− θ̃

αBn
= 0.

Let n→∞, we have

exp(γ(1− α)) =
θ̃

αγ
. (A.1)

Equation (A.1) defines an implicit function of γ with respect to α.
By taking derivative, we have that when α = 1/γ, γ takes the minimum
value. Substituting α = 1/γ to Equation (A.1) yields

γ = ln θ̃ + 1.

This also proves the optimality of the threshold-based online
algorithm, as the competitive ratio for the fractional case is lower
bounded by ln θ̃ + 1.

Assuming b is an real number that is not less than λ, the threshold
value to further admit packet when the queue length is b, denoted by
g(b), is

g(b) = αγvmin

(
vmax

αγvmin

) (b−λ)n
Bn−αBn

.

Let n→∞ and replace r with ln θ̃ + 1. We have

g(b) = vmine
(ln θ̃+1) b

B
−1.
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A.3 Proof of Lemma 2.5.5

Here we only prove the nontrivial case where b ≥ l. Assume the initial
queue length is 0 and at time slot tmax, bthBuffAlg

ω (t) reaches the
maximum value during the time period [1, T ], i.e., bthBuffAlg

ω (tmax) = b.
We consider a special worst instance where there is no packet delivered
during [1, tmax] and no packet buffered by thBuffAlg during
[tmax + 1, T ]. In this case, we have the following claimed results:

1. The profit earned by thBuffAlg is at least
∑b

i=1 vi. This is due to
the fact that the investigated online algorithm is defined by a
non-decreasing threshold values. It is easy to see that the
minimum profit earned by thBuffAlg is

∑b
i=1 vi when the queue

length increases from 0 to b.

2. The profit by OPT is at most vb+1B +
∑b

i=λ+1 vi. As analyzed in
the proof for Lemma 2.5.2, there is no packet with value larger
than or equal to vb+1 during [1, T ]. So under the worst case, OPT
will definitely buffer B packets with the value of vb+1 − δ where δ
is an arbitrarily small positive value. This happens only when
bthBuffAlg
ω (t) reaches b. Because we assume there are no packets

delivered during [1, tmax], thus OPT will not buffer packet before
tmax. After OPT buffers B packets with value vb+1 − δ, the
number of packets further buffered by OPT before t (t > tmax)
will not be larger than b minus the queue length under thBuffAlg,
i.e., b − bthBuffAlg

ω (t), since there are no packets buffered by
thBuffAlg during [tmax + 1, T ] as assumed. The packet value will
not be larger than the threshold of thBuffAlg, so the maximum
profit earned by OPT during the time period when bthBuffAlg

ω (t)

goes back to 0 from b is not larger than
∑b

i=l+1 vi. Concluding the
above, we can get that the maximum profit by OPT during [1, T ]

will not be larger than vb+1B +
∑b

i=l+1 vi.

Based on the above analysis, we know that the maximum profit ratio
of OPT and thBuffAlg when there is no packet delivered during
[1, tmax] and no packet buffered during [tmax + 1, T ] is at most(
vb+1B +

b∑
i=l+1

vi

)
/

(
b∑
i=1

vi

)
. Actually, this ratio can be

approximately realized by the input instance in Equation (A.2) (also
shown in Figure A.1).

[(v1, 0)×λ, (v2, 0), . . . , (vb, 0), (vb+1−δ, 0)×B, (vb−δ, 1), (vb−1−δ, 1), . . . , (vλ+1−δ, 1)︸ ︷︷ ︸
The time slots that OPT selects to buffer.

].

(A.2)
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For the case of allowing packet delivery during [1, tmax] or packet
buffering during [tmax + 1, T ], we have the following analysis:

1. Assume under the worst case ω, there is a time period
[tDec,beg, tDec,end] ∈ [1, tmax] when bthBuffAlg

ω (t) keeps decreasing or
unchanged due to the packet delivery. Without loss of generality,
we assume [tDec,beg, tDec,end] is the time period of which the
beginning queue length bthBuffAlg

ω (tDec,beg) (for simplicity, we
denote bthBuffAlg

ω (tDec,beg) as bDec) is the largest among decreasing
periods, and assume at time slot tDec,rec, the queue length returns
to bDec. For details of the above instance, readers can also refer to
Figure A.2. Because there’s no time period with packet delivery
after tDec,rec and OPT will definitely empty the buffer before the
queue length under thBuffAlg reaches the maximum, thus
bOPT
ω (tRec) = 0 must hold. Further, there’s no packet of value

larger than g(bDec) before tDec,beg, so we have
bOPT
ω (tDec,beg − 1) = 0 for some worst case. From the above

analysis, we have that the queue length of thBuffAlg and OPT at
tDec,rec will both return to the state at tDec,beg. Then under some
particular worst case, the profit ratio during [tDec,beg, tDec,rec] must
be larger than CRb(thBuffAlg) (otherwise, we just “delete” the
input segment during [tDec,beg, tDec,rec], and this will not decrease
the profit ratio). Moreover, the adversary can repeat the input
instance during [tDec,beg, tDec,rec] for arbitrary times, since the
queue length of OPT and thBuffAlg both go back to the state at
tDec,beg. Assume the input instance during [1, tDec,beg − 1] is ω1,
and the input instance during [tDec,beg, tDec,rec] is ω2, we can
construct the input instance ω1 + ω2 × j + [(vmin), B] which lies
in subset ΩthBuffAlg

bDec . When j is large enough, we can get a larger
local competitive ratio than CRb(thBuffAlg), i.e.,

CRb(thBuffAlg) < CRbDec(thBuffAlg), bDec < b.

In conclusion, the above analysis implies that when
CRb(thBuffAlg) ≥ CRb′(thBuffAlg) for b′ < b, there will be no
packets delivered during [1, tmax].

2. Assume under the worst case ω, there is a time period
[tInc,beg, tInc,end] when bthBuffAlg

ω (t) keeps increasing or unchanged
due to the packet buffering. Similar to the analysis in (1), we can
also find the buffering time period with the largest ending queue
length as shown in Figure A.3. We can also deduce that the buffer
at time tInc,rec and tInc,end must be full, since there will be no packet
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of value larger than g(bthBuffAlg
ω (tInc,beg)) or g(bthBuffAlg

ω (tInc,rec))
afterwards. Thus under the worst case, the profit ratio during
[tInc,rec, tInc,end] is larger than CR

Ω
thBuffAlg
b

(thBuffAlg). Then we can
construct a case similar to (1) and prove that there is a subset
whose local competitive ratio is larger than that of ΩthBuffAlg

b . At
last, we can get that no packets buffered during [tmax + 1, T ] when
CRb(thBuffAlg) ≥ CRb′(thBuffAlg) for b′ > b.

Concluding (1) and (2), we can prove that when CRb(thBuffAlg) ≥
CRb′(thBuffAlg), b′ > b, there is no packet delivered during [1, tmax]
and no packet buffered during [tmax + 1, T ] under the worst case. In this
case, the worst input instance should be as shown in Figure A.1, and the
corresponding competitive ratio is

CRb(thBuffAlg) =

vb+1B +
b∑

i=λ+1

vi

b∑
i=1

vi

.

This completes the proof.

A.4 Proof of Lemma 2.5.6

Given the length of the first step is λ, optimizing the threshold values of
CR(thBuffAlg) is equivalent to solving the following problem:

min y

s.t. y ≥
(
vb+1B +

b∑
i=λ+1

vi

)
/

(
vminλ+

b∑
i=λ+1

vi

)
, b = λ, λ+ 1, . . . , B.

var y, vmin ≤ vi ≤ vmax, i = λ+ 1, λ+ 2, . . . , B.

The vector of variables is [y, vλ+1, vλ+2, . . . , vB]. By partially
dualizing on the first set of nonequality constraints, we obtain the
following Lagrangian function:

L(y,v,µ) = y +
B−λ∑
i=0

µi

[(
vλ+i+1B +

l+i∑
j=λ+1

vj

)
− y

(
vminλ+

λ+i∑
j=λ+1

vj

)]
,

where µi, i = 0, 1, · · · , B − λ are the dual variables associated with the
non-equality constraints.
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The first-order optimality necessary condition can be expressed as

1−
B−λ∑
i=0

µi

(
vminλ+

λ+i∑
j=λ+1

vj

)
= 0,

µiB + (1− y)
B−λ∑
k=i+1

µk = 0, i = 0, 1, . . . , B − λ− 1.

Note that vmin ≤ vj ≤ vmax for j = λ + 1, λ + 2, . . . , B − 1. Note
also that y is equal to CR(thBuffAlg), so definitely, we have 1 − y < 0.
Combining the above equations, we establish the result that µi > 0, i =
0, 1, . . . , B − λ. Moreover, according to the complementary slackness
condition

µi

[(
vλ+i+1B +

λ+i∑
j=λ+1

vj

)
− y

(
vminλ+

λ+i∑
j=λ+1

vj

)]
= 0, i = 0, 1, . . . , B − λ,

the following equations hold:(
vλ+i+1B +

λ+i∑
j=λ+1

vj

)
− y

(
vminλ+

λ+i∑
j=λ+1

vj

)
= 0, i = 0, 1, . . . , B − λ.

Alternatively, theses equations can be rewritten as

vλ+i+1B +
λ+i∑

j=λ+1

vj

vminλ+
λ+i∑

j=λ+1

vj

= y, i = 0, 1, . . . , B − λ.

This completes the proof.
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B.1 Proof of Inequality (5.9)

The proof relies on the following Hoeffding’s Lemma.

Lemma B.1.1: (Hoeffding’s Lemma) Let Z be any real-valued random
variable with expected value E[Z] = 0 and such that a ≤ Z ≤ b almost
surely. Then, for all λ ∈ R,

E [exp(λZ)] ≤ exp

(
λ2(b− a)2

8

)
.

We thus define a random variable Y whose probability mass function
is specified as

Pr [Y = c̄`+1,t(i`+1)]

=
exp

(
−ηtC̄`+1,t−1(i`+1)

)∑
i′`+1∈H`+1(K`(il))

exp
(
−ηtC̄`+1,t−1(i′`+1)

) , (B.1)

for ∀i`+1 ∈ H`+1(K`(i`)).
Since c̄`+1,t(i`+1) ∈ [0, 1],∀i`+1, we have that 0 ≤ Y ≤ 1 for sure.

However, random variable Y may not have zero mean. We thus denote
another random variable Z = Y − E[Y ]. Clearly, E[Z] = 0 and −1 ≤
Z ≤ 1 for sure. We further let λ = −ηt. Thus, by Hoeffding’s Lemma,
we have

E[exp(−ηtZ)] ≤ exp

(
(−ηt)2(1− (−1))2

8

)
= exp

(
η2
t

2

)
. (B.2)

In addition, we have

E[exp(−ηtZ)] = E[exp(−ηt(Y − E[Y ]))]

= E[exp(−ηtY )] · exp[ηtE[Y ]]. (B.3)

Combining (B.2) and (B.3), we get

E[exp(−ηtY )] · exp (ηtE[Y ]) ≤ exp

(
η2
t

2

)
. (B.4)
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Taking logarithm and rearranging the items in (B.4), we have

E[Y ] ≤ − 1

ηt
lnE[exp(−ηtY )] +

ηt
2
. (B.5)

Now applying the probability mass function (B.1) into (B.5), we get that

E[Y ] =
∑

i`+1∈H`+1(K`(i`))

exp
(
−ηtC̄`+1,t−1(i`+1)

)
· c̄`+1,t(i`+1)∑

i′`+1∈H`+1(K`(i`))
exp

(
−ηtC̄`+1,t−1(i′`+1)

)
≤ − 1

ηt
lnE[exp(−ηtY )] +

ηt
2
.

= − 1
ηt

ln
∑

i`+1∈H`+1(K`(i`))

exp(−ηtC̄`+1,t−1(i`+1))·exp(−ηtc̄`+1,t(i`+1))∑
i′
`+1
∈H`+1(K`(i`))

exp(−ηtC̄`+1,t−1(i′`+1))
+ ηt

2
.

B.2 Proof of Equality (5.10)

To prove (5.10), we only need to show that

Φt(ηt)− Φt(ηt+1) ≤ ln 2 · n
(

1

ηt+1

− 1

ηt

)
. (B.6)

The second inequality of (5.10) simply follows from ηt =
√

n
t
. We next

prove (B.6).
We call a vector z = (z1, z2, . . . , zm) ∈ Rm a non-increasing non-

negative vector if z1 ≥ z2 ≥ · · · ≥ zm ≥ 0. We then define a function

Ψ(δ, z)
def
= −1

δ
ln

m∑
j=1

exp (−δzj) , δ > 0,

where z = (z1, z2, · · · , zm) is a non-increasing non-negative vector in
Rm. We further define a function ~(·) mapping from a non-increasing
non-negative vector to another non-increasing non-negative vector,
where ~(z) changes all largest elements of z into the second-largest
element of z. Namely, if the first k elements x are the largest, i.e.,
z1 = z2 = · · · = zk > zk+1 ≥ · · · ≥ zm, then

~(z) = (zk+1, zk+1, . . . , zk+1︸ ︷︷ ︸
In total k

, zk+1, zk+2, . . . , zm).

Clearly, if we apply function ~(·) to a non-increasing non-negative
vector z for m times, we get a constant vector
zmin = (zm, zm, · · · , zm).
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We have the following lemma.

Lemma B.2.1: For µ > ν > 0, any non-increasing non-negative vector
z, we have

Ψ(µ, z)−Ψ(ν,z) ≤ Ψ(µ, ~(z))−Ψ(ν, ~(z)). (B.7)

Proof of Lemma B.2.1. (i) If z is a constant vector, i.e., z1 = z2 =
· · · = zm, then ~(z) = z and thus (B.7) holds as an equality.

(ii) If z is not a constant vector, we assume that the largest element of
z is z and there are in total k < m largest elements in z, i.e., z = z1 =
z2 = · · · = zk > zk+1 ≥ zk+2 · · · ≥ zm.

Then

Ψ(µ, z)−Ψ(ν,z) = − 1

µ
ln

(
k exp (−µz) +

m∑
j=k+1

exp (−µzj)
)

+
1

ν
ln

(
k exp (−νz) +

m∑
j=k+1

exp (−νzj)
)

def
= Υ(z), (B.8)

where the last equality defines a function with respect to z satisfying
z > zk+1. Taking the derivative on Υ(z) with respect to z, we get

∂Υ(z)

∂z
=

k exp (−µz)

k exp (−µz) +
m∑

j=k+1

exp (−µzj)
− k exp (−νz)

k exp (−νz) +
m∑

j=k+1

exp (−νzj)
.

Define

Θ(σ)
def
=

k exp (−σz)

k exp (−σz) +
∑m

j=k+1 exp (−σzj)
.

Then we have that
∂Υ(z)

∂z
= Θ(µ)−Θ(ν). (B.9)

Taking derivative on Θ(σ) with respect to σ, we get

∂Θ(σ)

∂σ
=
k exp (−σz)

∑m
j=k+1(zj − z) exp (−σzj)(

k exp (−σz) +
∑m

j=k+1 exp (−σzj)
)2 .

Since z > zj , for j = k + 1, k + 2, . . . ,m, we have ∂Θ(σ)
∂σ

< 0. Because
µ > ν, we have

∂Υ(z)

∂z
= Θ(µ)−Θ(ν) < 0, ∀z > zi+1.
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Thus, Υ(z) < Υ(zi+1). By noting that Υ(zi+1) = Ψ(µ, ~(z)) −
Ψ(ν, ~(z)), we thus have

Ψ(µ, z)−Ψ(ν,z) < Ψ(µ, ~(z))−Ψ(ν, ~(z)).

Part (i) and part (ii) complete the proof. 2

Based on Lemma B.2.1, we can immediately obtain the following
result.

Lemma B.2.2: For µ > ν > 0 and any non-increasing non-negative
vector z ∈ Rm, we have

Ψ(µ, z)−Ψ(ν,z) ≤
(

1

ν
− 1

µ

)
lnm. (B.10)

Proof of Lemma B.2.2. From Lemma B.2.1, we have

Ψ(µ, z)−Ψ(ν,z) ≤Ψ(µ, ~(z))−Ψ(ν, ~(z))

≤Ψ(µ, ~(~(z)))−Ψ(ν, ~(~(z)))

≤ · · ·
≤Ψ(µ, zmin)−Ψ(ν,zmin)

=

(
1

ν
− 1

µ

)
lnm,

where zmin = (zm, zm, . . . , zm). This completes the proof. 2

We can sort all C̄`+1,t(i`+1)’s where i`+1 ∈ H`+1(K`(i`)) in a
descending order and construct a non-increasing non-negative vector
z ∈ R|H`+1(K`(i`))|. Then based on Lemma B.2.1, we have

Φt(ηt)− Φt(ηt+1) = Ψ(ηt, z)−Ψ(ηt+1, z)

≤
(

1

ηt+1

− 1

ηt

)
ln |H`+1(K`(i`))| ≤

(
1

ηt+1

− 1

ηt

)
n ln 2, (B.11)

where the last inequality follows from |H`+1(K`(i`))| ≤ 2n.
This completes the proof for inequality (5.10).
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B.3 Proof of Inequality (5.11)

First, we have

exp

(
ηT max

i`+1∈H`+1(i`)
[−C̄`+1,T (i`+1)]

)
≤

∑
i`+1∈H`+1(i`)

exp
(
−ηT C̄`+1,T (i`+1)

)
. (B.12)

Taking logarithm and dividing by − 1
ηT

< 0 in both sides of (B.12), we
can get that

ΦT (ηT ) = − 1

ηT
ln

∑
i`+1∈H`+1(K`(i`))

exp
(
−ηT C̄`+1,T (i`+1)

)
≥ min

i`+1∈H`+1(Kl(i`))
C̄`+1,T (i`+1)

≥ C̄`+1,T (i′′`+1)
(
∀i′′`+1 ∈ H`+1(K`(i`))

)
=

T∑
t=1

c̄`+1,t(i
′′
`+1)

=
T∑
t=1

E

cm,t(Im,t)− min
im∈Hm(K`−1(v`−1(i`)))

cm,t(im)

2m−`+1Lm
|I`+1,t = i′′`+1

 ,
(B.13)

where the second last equality follows from the definition of C̄`,t(i`) in
(5.7) and the last equality follows from the definition of c̄`,t(i`) in (5.3)
and v`(i′′`+1) = i`.

This completes the proof.

B.4 Proof of Lemma 5.7.1

Analogous to Equation (5.8), we have Equation (B.14) which
characterizes the regret loss in each layer. In Equation (B.14),
Q̃ = H`+1(K`(i`)) and Q̄ = Hmt(K`(i`)). Equality (E1) is according
to the definition for the normalized expected cost shown in Equation
(5.15). Equality (E2) is simply by the choosing probability for subsets
in each layer. Inequality (E3) has been proved in Section (B.1).
Equality (E4) follows from the update law for the cumulative expected
cost. Inequality (E5) is based on the Equation (5.10) and (5.11), as
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well as the following inequality

− Φt`+1−1(ηt`+1
)

=
1

ηt`+1

ln
∑

i`+1∈H`+1(Kl(i`))

exp
(
−ηt`+1

C̄`+1,t`+1−1(i`+1)
)

=
1

ηt`+1

ln |H`+1(K`(i`))|

≤
√
nt`+1.

Inequality (E6) is proved in Section B.3.
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∑
t∈T`+1

H[c′mt,t(Imt,t)|I`,t = i`]

=
∑

t∈T`+1

∑
i`+1∈Q̃

Pr[I`+1,t = i`+1|I`,t = i`] · E
[
c′mt,t(Imt,t)|I`+1,t = i`+1

]
(E1)
=

∑
t∈T`+1

∑
i`+1∈Q̃

Pr[I`+1,t = i`+1|I`,t = i`] ·

[
c̄′`+1,t(i`+1) · 2mt−`Lmt + min

imt∈Q̄
c′mt,t(imt)

]

=
∑

t∈T`+1

 ∑
i`+1∈Q̃

Pr[I`+1,t = i`+1|I`,t = i`] · c̄′`+1,t(i`+1) · 2mt−`Lmt + min
imt∈Q̄

c′mt,t(imt)


(E2)
=

∑
t∈T`+1


 ∑

i`+1∈Q̃

exp
(
−ηtC̄′`+1,t−1(i`+1)

)∑
i′
`+1
∈Q̃

exp
(
−ηtC̄′`+1,t−1(i′`+1)

) · c̄′`+1,t(i`+1)

 · 2mt−`Lmt + min
imt∈Q̄

c′mt,t(imt)


(E3)

≤
∑

t∈T`+1


− 1

ηt
ln

∑
i`+1∈Q̃

exp
(
−ηtC̄′`+1,t−1(i`+1)

)
· exp

(
−ηtc̄′`+1,t(i`+1)

)∑
i′
`+1
∈Q̃

exp
(
−ηtC̄′`+1,t−1(i′`+1)

) +
ηt
2

 · 2mt−`Lmt + min
im∈Q̄

c′mt,t(imt)


(E4)
=

∑
t∈T`+1

− 1

ηt
ln

∑
i`+1∈Q̃

exp
(
−ηtC̄′`+1,t(i`+1)

)∑
i′
`+1
∈Q̃

exp
(
−ηtC̄′`+1,t−1(i′`+1)

) +
ηt
2

 · 2mt−`Lmt +
∑

t∈T`+1

min
imt∈Q̄

c′mt,t(imt)

=
∑

t∈T`+1

[
Φt(ηt)− Φt−1(ηt) +

ηt
2

]
· 2mt−`Lmt +

∑
t∈T`+1

min
imt∈Q̄

c′mt,t(imt)

=

ΦT (ηT ) +

T−1∑
t=t`+1

(Φt(ηt)− Φt(ηt+1))− Φt`+1−1(ηt`+1) +

T∑
t=t`+1

ηt
2

 · 2mt−`Lmt +
∑

t∈T`+1

min
imt∈Q̄

c′mt,t(imt)

(E5)

≤

ΦT (ηT ) + ln 2 · n
(

1

ηT
− 1

ηt`+1

)
− Φt`+1−1(ηt`+1) +

T∑
t=t`+1

ηt
2

 · 2mt−`Lmt +
∑

t∈T`+1

min
imt∈Q̄

c′mt,t(imt)

≤
{

ΦT (ηT ) +
√
nT +

√
nt`+1 +

√
nT
}
· 2mt−`Lmt +

∑
t∈T`+1

min
imt∈Q̄

c′mt,t(imt)

(E6)

≤

 ∑
t∈T`+1

E

[
c′mt,t(Imt,t)−minimt∈Q̄

c′mt,t(imt)

2mt−`Lmt

|I`+1,t = i′′`+1

]
+ 3
√
nT

 · 2mt−`Lmt +
∑

t∈T`+1

min
imt∈Q̄

c′mt,t(imt)

≤
∑

t∈T`+1

E
[
c′mt,t(Imt,t)|I`+1,t = i′′`+1

]
+ 3
√
nT · 2mt−`Lmt

=
∑

t∈T`+1

E
[
c′mt,t(Imt,t)|I`+1,t = i′′`+1

]
+ 3DLn

√
T · 1

2`
, ∀i′′`+1 ∈ Q̃

(B.14)
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∑
t∈T

E[c′mt,t(Imt,t)]−
∑
t∈T

c′mt,t(i
∗
mt

) =
∑
t∈T

E[c′mt,t(Imt,t)|I0,t = i∗0]−
∑
t∈T

c′mt,t(i
∗
mt

)

(E1)
=
∑
t∈T1

E[c′mt,t(Imt,t)|I0,t = i∗0]−
∑
t∈T1

c′mt,t(i
∗
mt

)

≤
∑
t∈T1

E
[
c′mt,t(Imt,t)|I1,t = i∗1

]
−
∑
t∈T1

c′mt,t(i
∗
mt

) + 3DLn
√
T · 1

20

(E2)
=
∑
t∈T2

E
[
c′mt,t(Imt,t)|I1,t = i∗1

]
−
∑
t∈T2

c′mt,t(i
∗
mt

) + 3DLn
√
T · 1

20

≤
∑
t∈T2

E
[
c′mt,t(Imt,t)|I1,t = i∗2

]
−
∑
t∈T2

c′mt,t(i
∗
mt

) + 3DLn
√
T ·
(

1

20
+

1

21

)

≤ · · · ≤ 3DLn
√
T ·
(

1

20
+

1

21
+ · · ·+ 1

2m

)
≤ 6DLn

√
T .

(B.15)

With the results in Equation (B.14), we have Equation (B.15).
In Equation (B.15), the equalities follow from the fact that∑

t∈T`

E[c′mt,t(Imt,t)|I`,t = i∗` ]−
∑
t∈T`

c′mt,t(i
∗
mt)

=
∑
t∈T`+1

E[c′mt,t(Imt,t)|I`,t = i∗l ]−
∑
t∈T`+1

c′mt,t(i
∗
mt).

This completes the proof.

2 End of chapter.
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